首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (referred to as the CHO/HGPRT system) can be quantitated by selection for the phenotype of resistance to 6-thioguanine (TG) under stringently defined conditions. The phenotypic expression time, that is, the time interval after mutagen treatment which is necessary befor all mutant cells are able to express the TG-resistant phenotype, has been found to be 7–9 days in this CHO/HGPRT system when the cells are subcultured every 48 h. Subculture in medium with or without hypoxanthine (HX) utilizing trypsin, ethylenediaminetetraacetic acid (EDTA), or ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) for cell removal yields identical results. When subculture at intervals greater than 48 h is employed, a slight lengthening of the expression time is observed. An alternative method to regular subculture has also been achieved by maintaining the cells in a viable, non-dividing state in serum-free medium. This procedure yields a similar time course of phenotypic expression and thus shows that continued cell division is not essential to this expression process. In addition, this observation offers methodology which can significantly reduce the investment of time and money for mutation induction determinations in this mammalian cell gene mutation assay.  相似文献   

2.
The induction of mutation by a variety of mutagens has been measured utilizing the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (CHO/HGPRT) system). These mutagens include physical agents such as UV light and X-rays, and chemicals such as alkylating agents, ICR-191, and metallic compounds. This system can also be modified for study of the mutagenicity of promutagens such as dimethylnitrosamine (DMN) which require biotransformation for mutagenic action, either through the addition of a rat liver microsomal activation preparation or through a host-mediated activation step using Balb/c athymic mice.  相似文献   

3.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

4.
Fluctuation analyses of the spontaneous appearance of 6-thioguanine (TG)-resistant mutants in cultured Chinese hamster ovary (CHO) cells were performed to investigate (1) whether the resistance is induced by the selective agent or is the result of a mutation which occurs prior to the TG selection and (2) to estimate the spontaneous mutation rate at the hypoxanthine—guanine phosphoribosyl transferase (hgprt) locus. The potential problem of phenotypic delay was minimized by allowing an adequate expression time through maintenance of the cultures in a division-arrested, viable state. The results demonstrate that the TG-resistant (TGr) cells arise randomly in the cultures, independently of the selective agent, which is consistent with spontaneous mutations. The average values for mutation rate ± standard deviation, based on 4 independent determinations and 2 methods of calculation, are 3.4 ± 1.2 × 10?7 (median method) and 5.1 ± 1.8 × 10?7 (mean method) mutants/cell/generation.  相似文献   

5.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

6.
When CaCl2 was added in increasing concentrations to a rat liver metabolic activation system (S9) buffered with sodium phosphate, the mutagenic activity and cytotoxicity of dimethylnitrosamine (DMN) in the Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system were greatly increased. This effect was not observed with an S9 mix buffered with N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES). The calcium phosphate gel precipitate of the S9 mix possessed approximately built13 of the total activity of the mix, while the supernatant had only slight activity. However, when the calcium phosphate gel precipitate of a solution of S9 salts (without S9 protein) was added to the supernatant, the remaining 23 of the activity was recovered. Commercially obtained calcium phosphate, tricalcium phosphate, and alumina C γ gels could substitute for CaCl2 in the S9 mix, but diethylaminoethyl cellulose (DEAE cellulose) could not. Alumina C γ gel can exert its effect in the absence of both CaCl2 and phosphate in the S9 mix. Increasing the time of contact between the S9 protein and the S9 salts increased the efficacy with which the S9 mix activated DMN; this is indicative of an adsorptive process by calcium phosphate gel.  相似文献   

7.
The lag in phenotype expression of methylnitrosourea(MNU)-induced mutation to 6-thioguanine (6TG) resistance has been studied in a diploid human lymphoblastoid cell line. We find that a considerable period (8–12 days) elapses before new mutants appear in treated cultures; after 2 weeks, however, a stable maximum fraction is attained, as would be expected for a genetic mutation. We present preliminary data linking this phenotypic lag to the slow degradation rate of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and to an apparent requirement for very low (<0.2% normal) cellular HGPRT content in order for cells to be resistant to 10 μg 6TG/ml. A series of reconstruction experiments are presented, the results of which support the conclusion that selective pressures in the assay procedure do not bias the quantitative estimates of induced mutant fraction.  相似文献   

8.
Factors affecting the efficiency of selection of “reverants” of salvage pathway mutants in media containing amethopterin have been examined. Our V79 Chines hamster cell line was found to require a significantly higher level of thymidine for optimal growth in such media than has been reported for other cell lines. Hypoxanthine (but not glycine) was also required for reversal of amethopterin toxicity, but levels did not differ significantly from those reported elsewhere. Growth in HAT was also dependent on plating density and serum batch. Our modification (VHAT) was compared with published HAT recipies in back selection reconstruction experiments. A sharp fall in EOR (efficiency of recovery) of wild type cells from mixtures with mutants at plating densities greater than 3500 cells/cm2 (105 cells/6 cm dish) was observed for VHAT. EOR with other HAT recipes was lower still, and was affected also by the particular mutant used in the mixture.EMS induced “revertants” were isolated from three 8AZr mutants by plating in VHAT. All. revertants were however amethopterin resistant, they were also 8AZ resistant and the mobility of residual HGPRT (as measured by polyacrylamide gel electrophoresis) was similar to that of their 8AZr parents i.e. dissimilar from that in wild type. The modal chromosome number of V79 wild type cells was 21. No significant deviation from this mode was detected in any of the mutant lines examined. The data indicate that the recovery of colonies in HAT from 8AZr mutants does not necessarily indicate that a back mutation in the structural gene for HGPRT has occurred. Thus, the frequency of HAT+ colonies cannot be taken as a direct indication of reversion frequencies.  相似文献   

9.
10.
The development of a system for the detection of somatic cell mutation to hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) (EC 2.4.2.8) deficiency in L5178Y mouse lymphoma cells is described. The selection of mutant cells was not influenced by the concentration of the selective agent 6-thioguanine (6-TG). In addition, all the mutants selected, spontaneous as well as induced ones, showed a complete loss of HGPRT activity. In reconstruction experiments, in which mutant cells were mixed with wild-type cells, the recovery of mutant cells was only markedly influenced when wild-type cells were seeded in a cell density ten times higher than the one, 5-10(4) cells/ml, used in subsequent induction experiments. X-irradiation and treatment with ethyl methanesulfonate (EMS) increased in the mutation rate above the spontaneous background. A clear-cut dose-dependent mutagenic effect after exposure to X-rays was measured. The rate of induced mutations at the HGPRT locus in lymphoma cells was 1-3-10(-7) per R, as determined after exposures of 200, 300, 400, 500 and 600 R. The time the cells needed to express their mutations was much longer than 48 h. Further study of this phenomenon showed that the optimal expression time for TGr-resistant mutants in L5178Y cells was 6 to 7 days. No indication for a dose-dependent effect on the optimal expression of the mutants was found.  相似文献   

11.
A procedure involving treatment of cells in suspension culture and soft-agar cloning was developed for measuring mutation of Chinese hamster ovary (CHO) cells to 6-thioguanine (6TG) resistance. The use of suspension cultures precluded the need for trypsinization and also permitted a 5-fold increase in cell population for compound exposure and mutant selection as compared to former monolayer techniques. Soft-agar cloning reduced the opportunity for metabolic cooperation and permitted the use of non-dialyzed fetal calf serum which resulted in spontaneous mutant frequencies of 6.6 +/- 3.2 X 10(-6) and cloning efficiencies of 91 +/- 18%. Relative total growth values were calculated based on suspension growth and cloning efficiencies such that an assessment of toxicity could be estimated from treatment through cloning. Dose-dependent mutagenic responses were observed in CHO cells following treatment with ethyl methanesulfonate, methyl methanesulfonate, 4-nitroquinoline-1-oxide, methylnitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Clones of 6TG-resistant cells harvested from soft agar maintained 6TG resistance and methotrexate sensitivity and did not incorporate [3H]hypoxanthine into DNA. These preliminary findings indicate that the use of suspension cultures and soft-agar cloning has improved the efficiency and cost effectiveness of the CHO/HGPRT mutation assay.  相似文献   

12.
Chinese hamster ovary (CHO) cells in culture were utilized to determine the cytotoxicity, specific-locus mutation induction, and DNA alkylation which result from treatment of the cells with a range of concentrations of N-methyl-N-nitrosourea (MNU) or N-ethyl-N-nitrosourea (ENU). With [3H]MNU over the concentration range 0.43--13.7 mM, methylation of DNA was found to increase linearly, with a mean value of 56.7 pmol residue per mumol nucleoside per mM. With [1-3H]ENU over the concentration range 1.7--26.8 mM, ethylation was linear, with a mean value of 3.8 pmol residue per mumol nucleotide per mM. Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by determination of the frequency of resistance to 6-thioguanine under stringently-defined selection conditions. The mutation frequency increased linearly with MNU or ENU concentration (0.01--2.0 mM); mean values were 2800 and 840 mutants per 10(6) clonable cells per mM, respectively. At equal levels of DNA alkylation, ENU was found to be approx. 4.5 times as mutagenic as MNU.  相似文献   

13.
As a first step in the development of a multiple-marker, mammalian cell mutagenesis assay system, we have isolated a Chinese hamster ovary (CHO) cell line that is heterozygous for both the adenine phosphoribosyltransferase (aprt) and thymidine kinase (tk) loci. Presumptive aprt+/? heterozygotes with intermediate levels of APRT activity were selected from unmutagenized CHO cell populations on the basis of resistance to low concentrations of the adenine analog, 8-azaadenine. A functional aprt+/? heterozygote with ~50% wild-type APRT activity was subsequently used to derive sublines that were also heterozygous for the tk locus. Biochemical and genetic characterization of one such subline, CHO-AT3-2, indicated that it was indeed heterozygous at both the aprt and tk loci. CHO-AT3-2 cells permitted single-step selection of mutants resistant to 8-azaadenine or 5-fluorodeoxyuridine, allowing quantitation and direct comparison of mutation induction at the autosomal aprt or tk loci, as well as in the gene involved in ouabain resistance or at the X-linked, hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus. Significant dose-dependent increases in mutation frequency were observed for all 4 genetic markers after treatment of CHO-AT3-2 cells with ethyl methanesulfonate.  相似文献   

14.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

15.
When seeded in small numbers in medium containing 10?6M aminopterin and fetal calf serum, V79 Chinese hamster cells required dialyzable components from the serum for growth. However, the cells grew in medium containing 10?6M aminopterin and dialyzed serum, provided that the medium was supplemented with 10?5M hypoxanthine and sufficient 5·10?6M) thymidine. A growth-inhibitory property of some batches of dialyzed serum was abolished on heating the serum for 30 min at 56°. Three lines of V79 cells which lacked detectable hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity were seleccted in medium containing 8-azaguanine (8-AzG). In two of these, no spontaneous reversion to the HGPRT+ phenotype was detectable, and these cells did not cooperate metabolically with HGPRT+ cells to prevent the growth of the latter in HAT medium. One of the HGPRT? lines showed a high rate of spontaneous reversion (118/105 cells) in medium containing undialyzed serum. However, in medium containing dialyzed serum the spontaneous reversion rate fell to 4105cells, suggesting that the revertants arising in medium containing undialyzed serum were biochemically heterogeneous.  相似文献   

16.
Higher mutation frequencies were observed on 8AG than on 8AG medium when HGPRT-deficient mutants were being selected in V79 Chinese hamster cells.2 alternative explanations for the effect of the medium were considered, namely (1), that mechanisms are present that cause resistance to 8AG only, in addition to that (or those) causing resistance to both drugs, and (2), that mutants with low HGPRT content survive on 8AG but not on 6TG medium, owing to lower affinity of 8AG for the enzyme. The second explanation was favoured as a result of various experimental approaches, including kinetics of expression on the 2 media, cross-resistance at different expression times and serial selection on the 2 media.  相似文献   

17.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [9-14C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5-3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

18.
We have investigated conditions necessary to quantify the relationship between exposure to a mutagen, ethyl methanesulfonate (EMS), and the frequency of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Maximal expression of potential mutants has been achieved by either subculturing at fewer than 5 X 10(5) cells/100-mm dish at 2-day intervals or by daily feeding of cultures. An expression period of 5 days (measure from 1 day after the initiation of treatment with the chemical mutagen) should be allowed, since at least 4 days of expression is required to reach to steady maximum of mutation frequency. It appears that there is no concentration dependence of expression time necessary to reach a plateau of mutation frequency with increasing concentrations of EMS up to 1.6 mg/ml. About 1.25 X 10(5) cells/100-mm dish or fewer should be plated for selection to avoid the loss of mutants which occurs at 1.5 X 10(5) cells/dish, presumably through cross-feeding (metabolic cooperation). The use of 6-thioguanine in hypoxanthine-free medium (supplemented with dialyzed fetal calf serum) appears to be a very stringent condition for selection. Mutation induction by EMS as a function of EMS exposure (EMS concentration X treatment time) increases linearly with concentration up to 12 h. For these treatment periods, the observed mutation frequencies for EMS are directly proportional to mutagen exposure regardless of the duration of the treatment.  相似文献   

19.
The effect of pre- and posttreatment incubation of UV-irradiated and ethyl methanesulphonate (EMS) treated cells with non-toxic concentrations of inhibitors of de novo purine synthesis (dnPS) on expression of potentially lethal and premutational damage at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in V79 cells has been examined. The concentrations of inhibitors used were shown to profoundly perturb de novo DNA synthesis, by measurements of [14C]formate uptake, and cell cycle progression by flow cytofluorimetry. Postincubation in 6-methyl mercaptopurine ribonucleoside (MMPR) usually but not invariably potentiated the cytotoxic effects of UV and EMS but azaserine (AZS) and methotrexate (MTX) were without effect. No effects on mutant frequencies were observed on posttreatment with any of these agents. Caffeine produced the least effect on dnPS, but invariably potentiated lethal damage. This potentiation of lethal damage is not mediated by dnPS inhibition as has been suggested for Chinese hamster ovary (CHO) cells.  相似文献   

20.
The cytotoxic and mutagenic effects of the incorporation of 5-bromodeoxyuridine (BrdU)_followed by exposure to black light were investigated with Chinese hamster ovary (CHO) cells in cell culture. Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (hgprt) locus was determined by selection for 6-thioguanine resistant (TGr) mutants (CHO/HGPRT system). BrdU alone has been shown to be mutagenic only at concentrations of 50 μM or greater. This study was performed in an effort to determine whether BrdU is actually incorporated into the hgprt gene when lower, nonmutagenic concentrations are employed. Neither BrdU (1–20 μM) nor exposure to black light alone was mutagenic, but the combined treatment did result in the induction of TGr mutants. The mutant frequency increased with increasing light exposure at constant BrdU and with inreasing BrdU at constant light exposure. These results show that BrdU is incorporated into the hgprt gene, but that this does not result in mutation induction in the absence of light exposure. Such a BrdU-plus-light procedure might be applied to studies of DNA repair at this locus, since mutation induction requires both BrdU incorporation and subsequent exposure to black light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号