首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Tracheary element (TE) differentiation is a typical example of programmed cell death (PCD) in higher plants, and maturation of TEs is completed by degradation of all cell contents. However, lignification of TEs progresses even after PCD. We investigated how and whence monolignols are supplied to TEs which have undergone PCD during differentiation of isolated Zinnia mesophyll cells into TEs. Higher densities of cell culture induced greater lignification of TEs. Whereas the continuous exchanging of culture medium suppressed lignification of TEs, further addition of coniferyl alcohol into the exchanging medium reduced the suppression of lignification. Analysis of the culture medium by HPLC and GC-MS showed that coniferyl alcohol, coniferaldehyde, and sinapyl alcohol accumulated in TE inductive culture. The concentration of coniferyl alcohol peaked at the beginning of secondary wall thickening, decreased rapidly during secondary wall thickening, then increased again. These results indicated that lignification on TEs progresses by supply of monolignols from not only TEs themselves but also surrounding xylem parenchyma-like cells through medium in vitro.  相似文献   

2.
To determine whether proteasome activity is required for tracheary element (TE) differentiation, the proteasome inhibitors clasto-lactacystin β-lactone and carbobenzoxy-leucinyl-leucinyl-leucinal (LLL) were used in a zinnia (Zinnia elegans) mesophyll cell culture system. The addition of proteasome inhibitors at the time of culture initiation prevented differentiation otherwise detectable at 96 h. Inhibition of the proteasome at 48 h, after cellular commitment to differentiation, did not alter the final percentage of TEs compared with controls. However, proteasome inhibition at 48 h delayed the differentiation process by approximately 24 h, as indicated by examination of both morphological markers and the expression of putative autolytic proteases. These results indicate that proteasome function is required both for induction of TE differentiation and for progression of the TE program in committed cells. Treatment at 48 h with LLL but not clasto-lactacystin β-lactone resulted in partial uncoupling of autolysis from differentiation. Results from gel analysis of protease activity suggested that the observed incomplete autolysis was due to the ability of LLL to inhibit TE cysteine proteases.  相似文献   

3.
Motose H  Fukuda H  Sugiyama M 《Planta》2001,213(1):121-131
The transdifferentiation of isolated mesophyll cells of zinnia (Zinnia elegans L.) into tracheary elements (TEs) has been well studied as a model of plant cell differentiation. In order to investigate intercellular communication in this phenomenon, two types of culture method were developed, in which mesophyll cells were embedded in a thin sheet of agarose gel and cultured on solid medium, or embedded in microbeads of agarose gel and cultured in liquid medium. A statistical analysis of the two-dimensional distribution of TEs in the thin-sheet cultures demonstrated their aggregation. In the microbead cultures, the frequency of TE differentiation was shown to depend on the local cell density (the cell density in each microbead): TE differentiation required local cell densities of more than 105 cells ml−1. These results suggest that TE differentiation involves cell-cell communication mediated by a locally acting diffusible factor. This presumptive factor was characterized by applying a modified version of the sheet culture, which used two sheets of different cell densities, a low-density sheet and a high-density sheet. Differentiation of TEs in the former could be induced only by bringing it into contact with the latter. Insertion of a 25-kDa-cutoff membrane between the high-density and low-density sheets severely suppressed such induction of TEs in the low-density sheet while a 300-kDa-cutoff membrane suppressed induction only slightly. Insertion of agarose sheets containing immobilized pronase E or trypsin also interfered with the induction of TEs in the low-density sheets. Thus, a proteinaceous macromolecule of 25–300 kDa in molecular weight was assumed to mediate the local intercellular communication required for TE differentiation. This substance was designated “xylogen” with reference to its xylogenic activity. The time of requirement for xylogen during TE differentiation was assessed by experiments in which cells in the low-density sheet were separated from xylogen produced in the high-density sheet at various times by insertion of a 25-kDa-cutoff membrane between the two sheets, and was estimated to be from the 36th hour to the 60th hour of culture (12–36 h before visible thickening of secondary cell walls of TEs). Received: 13 July 2000 / Accepted: 4 October 2000  相似文献   

4.
To determine the regulatory mechanism of gene expression in the early stages of tracheary element (TE) differentiation, we isolated and characterized a genomic fragment of TED3 whose mRNA is expressed preferentially in differentiating TEs 12–24 h before morphological changes in the in vitro Zinnia system. Transgenic Arabidopsis plants with a chimeric gene of the 537 bp TED3 promoter and the -glucuronidase (GUS) reporter gene indicated the strong expression of the GUS gene by the TED3 promoter in TEs, in particular in immature TEs as well as stipules and trichomes. GUS expression driven by the promoter was also induced in callus, in which GUS activity was localized in immature TEs and slender cells around TEs that may be TE precursor cells. The TED3 promoter was not significantly activated by wounding. This pattern of expression differed clearly from that of other vascular tissue-related genes such as PAL, 4CL, and GRP1.8. The nature of TED3 promoter enables us to use it to monitor TE differentiation in tissue and to introduce foreign genes preferentially into immature TE.  相似文献   

5.
During differentiation of isolated Zinnia mesophyll cells into tracheary elements (TEs), lignification on TEs progresses by supply of monolignols not only from TEs themselves but also from surrounding xylem parenchyma-like cells through the culture medium. However, how lignin polymerizes from the secreted monolignols has not been resolved. In this study, we analyzed phenol compounds in culture medium with reversed-phase HPLC, gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry, and found 12 phenolic compounds including coniferyl alcohol and four dilignols, i.e. erythro-guaiacylglycerol-beta-coniferyl ether, threo-guaiacylglycerol-beta-coniferyl ether, dehydrodiconiferyl alcohol and pinoresinol, in the medium in which TEs were developing. Coniferyl alcohol applied to TE-inductive cultures during TE formation rapidly disappeared from the medium, and caused a sudden increase in dilignols. Addition of the dilignols promoted lignification of TEs in which monolignol biosynthesis was blocked by an inhibitor of phenylalanine anmmonia-lyase (PAL), L-alpha-aminooxy-beta-phenylpropionic acid (AOPP). These results suggested that dilignols can act as intermediates of lignin polymerization.  相似文献   

6.
Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.  相似文献   

7.
Local intercellular communication is involved in tracheary element (TE) differentiation of zinnia (Zinnia elegans L.) mesophyll cells and mediated by a proteinous macromolecule, which was designated xylogen. To characterize and isolate xylogen, a bioassay system to monitor the activity of xylogen was developed, in which mesophyll cells were embedded in microbeads of agarose gel at a low (2.0-4.3x10(4) cells ml(-1)) or high density (8.0-9.0x10(4) cells ml(-1)) and microbeads of different cell densities were cultured together in a liquid medium to give a total density of 2.1-2.5x10(4) cells ml(-1). Without any additives, the frequency of TE differentiation was much smaller in the low-density microbeads than in the high-density microbeads. This low level of TE differentiation in the low-density microbeads was attributable to the shortage of xylogen. When cultures were supplemented with conditioned medium (CM) prepared from zinnia cell suspensions undergoing TE differentiation, the frequency of TE differentiation in the low-density microbeads increased remarkably, indicating the activity of xylogen in the CM. The xylogen activity in CM was sensitive to proteinase treatments. Xylogen was bound to galactose-specific lectins such as Ricinus communis agglutinin and peanut agglutinin, and precipitated by beta-glucosyl Yariv reagent. These results indicate that xylogen is a kind of arabinogalactan protein.  相似文献   

8.
T Demura  H Fukuda 《Plant physiology》1993,103(3):815-821
Mesophyll cells isolated mechanically from leaves of Zinnia elegans L. cv Canary bird differentiate into tracheary elements (TE) semisynchronously and at high frequency. Using this system, three cDNA clones, TED2 to TED4, whose corresponding mRNAs were expressed in a close association with tracheary element differentiation, were isolated by differential screening of a lambda gt11 cDNA library. The library was prepared using poly(A)+ RNA from cells cultured in a TE-induced medium for 48 h prior to morphological changes, including secondary cell-wall thickenings and autolysis. Northern analysis indicated that mRNAs corresponding to the clones were expressed preferentially in cells differentiating into TEs prior to the morphological changes. The expression of the mRNAs was found not to be induced by alpha-naphthaleneacetic acid or benzyladenine solely and not to be associated directly with cell division. Analysis of the nucleotide sequence of TED4 showed that the cDNA contains an open reading frame of 285 bp, encoding a polypeptide comprising 95 amino acid residues with a predicted molecular mass of 10.0 kD. A homology search of the nucleotide and amino acid sequences of TED4 with several data bases revealed a significant similarity to those of the barley aleurone-specific clone B11E, which was isolated as an aleurone-specific cDNA from 20-d postanthesis grain.  相似文献   

9.
Interruption of the vascular bundles of Zinnia internodes induced transdifferentiation of cells into tracheary elements (TEs) or sieve elements (SEs) within 4 d of wounding. The early stage of the regeneration processes was analyzed using two molecular marker genes, TED3 and ZeHB3, which are expressed specifically in TE precursor cells and immature phloem cells, respectively. An increase in the numbers of TED3 and ZeHB3 mRNA-expressing cells always preceded an increase in the numbers of TEs and SEs formed. The earliest sign of vascular differentiation was the appearance 24 h after wounding of a layer(s) of TED3 mRNA-expressing cells in the inter- and intrafascicular cambial-like regions along the severed vascular bundles. In contrast, the number of ZeHB3 mRNA-expressing cells decreased dramatically along the severed bundles 24 h after wounding, and increased again 36 h after wounding. These results clearly indicate that xylem and phloem differentiation are not synchronized during vascular regeneration. Treatment with 10(-3) M colchicine abolished the expression of ZeHB3 mRNA in pith parenchyma, but not TED3 mRNA; this suggests that cell division is a prerequisite for the transdifferentiation of pith parenchymal cells into immature phloem cells expressing ZeHB3. In contrast, transdifferentiation of pith parenchymal cells to TE precursor cells does not require preceding cell division. However, the inhibition of cell division prevented the formation of both radial files of TEs and the cambial-like layer(s) of TED3 mRNA-expressing cells, and, ultimately, vascular regeneration altogether. These results imply that wound-induced cambial-like activity in and between severed vascular bundles is essential for vascular regeneration.  相似文献   

10.
The zinnia (Zinnia elegans) mesophyll cell culture tracheary element (TE) system was used to study proteinases active during developmentally programmed cell death. Substrate-impregnated gels and single-cell assays revealed high levels of proteinase activity in differentiating TEs compared with undifferentiated cultured cells and expanding leaves. Three proteinases (145, 28, and 24 kD) were exclusive to differentiating TEs. A fourth proteinase (59 kD), although detected in extracts from all tissues examined, was most active in differentiating TEs. The 28- and 24-kD proteinases were inhibited by thiol proteinase inhibitors, leupeptin, and N-[N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl]-agmatine (E-64). The 145- and 59-kD proteinases were inhibited by the serine proteinase inhibitor phenylmethylsulfonyl fluoride (PMSF). Extracts from the TE cultures contained sodium dodecyl sulfate-stimulated proteolytic activity not detected in control cultures. Sodium dodecyl sulfate-stimulated proteolysis was inhibited by leupeptin or E-64, but not by PMSF. Other tissues, sucrose-starved cells and cotyledons, that contain high levels of proteolytic activity did not contain TE-specific proteinases, but did contain higher levels of E-64-sensitive activities migrating as 36- to 31-kD enzymes and as a PMSF-sensitive 66-kD proteinase.  相似文献   

11.
12.
As the first step toward understanding the involvement of endogenous brassinosteroids (BRs) in cytodifferentiation, we analyzed biosynthetic activities of BRs in zinnia (Zinnia elegans L. cv Canary Bird) cells differentiating into tracheary elements. The results of feeding experiments suggested that both the early and late C6-oxidation pathways occur during tracheary element differentiation. Gas chromatography-mass spectrometry analysis revealed that five BRs, castasterone, typhasterol, 6-deoxocastasterone, 6-deoxotyphasterol, and 6-deoxoteasterone, actually existed in cultured zinnia cells and culture medium. Quantification of endogenous BRs in each stage of tracheary element differentiation by gas chromatography-mass spectrometry exhibited that they increased dramatically prior to the morphogenesis, which was consistent with the idea that BRs are necessary for the initiation of the final stage of tracheary element differentiation. Moreover, the proportion of each BR in culture medium was quite different from that in cells, suggesting that specific BRs are selectively secreted into medium and may function outside the cells.  相似文献   

13.
Differentiation into a tracheary element (TE) is a typical example of programmed cell death (PCD) in the developmental processes of vascular plants. In the PCD process the TE degrades its cellular contents and becomes a hollow corpse that serves as a water conduct. Using a zinnia (Zinnia elegans) cell culture we obtained serial observations of single living cells undergoing TE PCD by confocal laser scanning microscopy. Vital staining was performed and the relative fluorescence intensity was measured, revealing that the tonoplast of the swollen vacuole in TEs loses selective permeability of fluorescein just before its physical rupture. After the vacuole ruptured the nucleus was degraded rapidly within 10 to 20 min. No prominent chromatin condensation or nuclear fragmentation occurred in this process. Nucleoids in chloroplasts were also degraded in a similar time course to that of the nucleus. Degradations did not occur in non-TEs forced to rupture the vacuole by probenecid treatment. These results demonstrate that TE differentiation involves a unique type of PCD in which active and rapid nuclear degradation is triggered by vacuole rupture.  相似文献   

14.
Kuriyama H 《Plant physiology》1999,121(3):763-774
A tracheary element (TE) is a typical example of a cell type that undergoes programmed cell death in the developmental processes of vascular plants. The loss of the selective permeability of the tonoplast, which corresponds to tonoplast disintegration, occurred after the cells commenced secondary wall thickening and played a pivotal role in the programmed cell death of TEs in a zinnia (Zinnia elegans L.) cell culture. A search for events specifically associated with the TE vacuole provided an important clue to the understanding of the cell death mechanism. The transport of fluorescein, a fluorescent organic anion, across the tonoplast declined drastically in differentiating TEs. The capacity of the vacuole to accumulate the probe was also impaired. Treatment with probenecid, an inhibitor of organic anion transport, caused rapid cell death of TEs and led to the ultimate disruption of the vacuole even in other types of cultured cells. These changes in vacuolar properties during TE development were suppressed by cycloheximide. Specific mRNA accumulation in cells cultured in a TE differentiation-inductive condition was abolished by probenecid. These results suggest that a change in vacuolar membrane permeability promotes programmed cell death in TEs.  相似文献   

15.
When cultured in broth, fresh clinical isolates of the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans form tenaciously adherent biofilm colonies on surfaces such as plastic and glass. These biofilm colonies release adherent cells into the medium, and the released cells can attach to the surface of the culture vessel and form new colonies, enabling the biofilm to spread. We mutagenized A. actinomycetemcomitans clinical strain CU1000 with transposon IS903phikan and isolated a transposon insertion mutant that formed biofilm colonies which were tightly adherent to surfaces but which lacked the ability to release cells into the medium and disperse. The transposon insertion in the mutant strain mapped to a gene, designated dspB, that was predicted to encode a secreted protein homologous to the catalytic domain of the family 20 glycosyl hydrolases. A plasmid carrying a wild-type dspB gene restored the ability of biofilm colonies of the mutant strain to disperse. We expressed A. actinomycetemcomitans DspB protein engineered to contain a hexahistidine metal-binding site at its C terminus in Escherichia coli and purified the protein by using Ni affinity chromatography. Substrate specificity studies performed with monosaccharides labeled with 4-nitrophenyl groups showed that DspB hydrolyzed the 1-->4 glycosidic bond of beta-substituted N-acetylglucosamine, which is consistent with the known functions of other family 20 glycosyl hydrolases. When added to culture medium, purified DspB protein, but not heat-inactivated DspB, restored the ability of the mutant strain to release cells and disperse. DspB protein also caused the detachment of cells from preformed biofilm colonies of strain CU1000 grown attached to plastic and the disaggregation of highly autoaggregated clumps of CU1000 cells in solution. We concluded that dspB encodes a soluble beta-N-acetylglucosaminidase that causes detachment and dispersion of A. actinomycetemcomitans biofilm cells.  相似文献   

16.
The effects of medium pH on cell expansion and tracheary element (TE) differentiation were investigated in differentiating mesophyll suspension cultures of Zinnia elegans L. In unbuffered cultures initially adjusted to pH 5.5, the medium pH fluctuated reproducibly, decreasing about 1 unit prior to the onset of TE differentiation and then increasing when the initiation of new Tes was complete. Elimination of large pH fluctuations by buffering the culture medium with 20 mM 2-(N-morpholino)ethanesulfonic acid altered both cell expansion and TE differentiation, whereas altering the starting pH of unbuffered culture medium had no effect on either process. Cell expansion in buffered cultures was pH dependent with an optimum of 5.5 to 6.0. The direction of cell expansion was also pH dependent in buffered cultures. Cells elongated at pH 5.5 to 6.0, whereas isodiametric cell expansion was predominant at pH 6.5 to 7.0. The onset of TE differentiation was delayed when the pH was buffered higher or lower than 5.0. However, TEs eventually appeared in cultures buffered at pH 6.5 to 7.0, indicating that a decrease in pH to 5.0 is not necessary for differentiation. Very large TEs with secondary cell wall thickenings resembling metaxylem differentiated in cultures buffered at pH 5.5 to 6.0, which also showed the greatest cell expansion. The correlation between cell expansion and delayed differentiation of large, metaxylem-like TEs may indicate a link between the regulatory mechanisms controlling cell expansion and TE differentiation.  相似文献   

17.
Uniconazole [S-3307; (E)-l-(4-chlorophenyl)-4,4-dimethyl-2-(l,2,4-triazol-l-yl)-l-penten-3-ol],a synthetic plant-growth retardant, inhibited the differentiationof isolated mesophyll cells of Zinnia elegans L. into trachearyelements (TEs) but had no effect on cell division when it wasadded to the culture medium at a concentration of 3.4 µM.In the presence of uniconazole, none of the cytological eventscharacteristic of the processes of TE differentiation, suchas aggregation of actin filaments, bundling of microtubulesor localized thickening and lignification of secondary walls,was observed. Uniconazole was effective when it was added tothe medium within 36 h after the start of culture. Brassinosteroids(0.2 nM brassinolide or 2 µM homobrassinolide), but notgibberellin A3, counteracted the inhibitory effect of uniconazoleon TE differentiation. Brassinosteroids were most effectivewhen they were added to cultures between 24 and 30 h after thestart of culture. Exogenously applied brassinosteroids promotedTE differentiation. It is suggested that the synthesis of brassinosteroidsis essential for the differentiation of the cells into TEs andthat uniconazole inhibits this differentiation through its inhibitoryeffect on the biosynthesis of brassinosteroids. (Received May 9, 1991; )  相似文献   

18.
Mechanically isolated mesophyll cells of Zinnia elegans differentiate into tracheary elements (TEs) when cultured in a medium containing adequate auxin and cytokinin. Differentiation in this culture system is relatively synchronous, rapid (occuring within 3 days of cell isolation) and efficient (with up to 65% of the mesophyll cells differentiating into TEs), and does not require prior mitosis. The Zinnia system has been used to investigate (a) cytological and ultrastructural changes occurring during TE differentiation, such as the reorganization of microtubules controlling secondary wall deposition, (b) the influences of calcium and of various plant hormones and antihormones on TE differentiation, and (c) biochemical changes during differentiation, including those occurring during secondary wall deposition, lignification and autolysis. This review summarizes experiments in which the Zinnia system has served as a model for the study of TE differentiation.  相似文献   

19.
The Zinnia mesophyll cell system consists of isolated leaf mesophyll cells in culture that can be induced, by auxin and cytokinin, to transdifferentiate semi-synchronously into tracheary elements (TEs). This system has been used to establish the precise time point at which the TE cell fate becomes determined, and then changes have been looked for in cell-wall composition and architecture that are associated with the establishment of competence, determination, and differentiation with the transition from primary to secondary cell wall formation. At very early stages in this time course, changes in the repertoire of proteins and polysaccharides both in the cell wall and secreted into the culture medium were found. Changes in the secretion of pectic polysaccharides, xyloglucans and arabinogalactan proteins (AGPs) have been detected using the monoclonal antibodies JIM 7, CCRC-M1 and JIM 13, that recognize these three classes of cell-wall molecule, respectively. Twenty-four hours before secondary thickenings are visible, an AGP is present in the primary walls of a subpopulation of cells, and is secreted into the culture medium. This molecule is present in the secondary thickenings of mature TEs but not in their surrounding primary walls. Methyl-esterified pectic polysaccharides are present in all cell walls and are secreted into the culture medium throughout the time course of differentiation, though at an increased rate in inductive medium. However, sugar and linkage analysis of culture media shows that a relatively unbranched rhamnogalacturonan is enriched in inductive medium around the time of determination and increases rapidly in concentration. The amount of fucosylated xyloglucan in cell walls increases during the time course, but appears in inductive medium 24 h earlier than in control medium and may have a subtly different structure. The fucose-containing epitope on the xyloglucan disappears abruptly and entirely from inductive medium 6 h before any secondary thickenings are visible in the cells. The disappearance of the epitope is correlated with secretion of several hydrolytic enzyme activities. In Zinnia leaves, the mesophyll cell walls contain neither the fucosylated xyloglucan nor the AGP, although methylesterified pectin is present. All three epitopes are expressed in the vascular bundles, and the AGP is specifically localized in the xylem cells. Fucosylated xyloglucan is also present in the epidermal tissue, and the AGP is present in guard cells. The dynamic behaviour of these specific cell-wall molecules is tightly correlated with differentiation events in vitro, and can be clearly distinguished from the production of new wall material found in expanding and elongating cells. The precise timing of the appearance and disappearance of these proteins and polysaccharides compared with the point of cell-fate determination provides us with a series of cell-surface markers for cell states at very early times in the transdifferentiation pathway.  相似文献   

20.
Z H Ye 《Plant physiology》1997,115(4):1341-1350
Caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) was previously shown to be associated with lignification in both in vitro tracheary elements (TEs) and organs of zinnia (Zinnia elegans). However, it is not known whether this is a general pattern in dicot plants. To address this question, polyclonal antibodies against zinnia recombinant CCoAOMT fusion protein were raiseed and used for immunolocalization in several dicot plants. The antibodies predominantly recognized a protein band with a molecular mass of 28 kD on western analysis of tissue extracts from zinnia, forsythia (Forsythia suspensa), tobacco (Nicotiana tabacum), alfalfa (Medicago sativa), and soybean (Glycine max). Western analyses showed that the accumulation of CCoAOMT protein was closely correlated with lignification in in vitro TEs of zinnia. Immunolocalization results showed that CCoAOMT was localized in developing TEs of young zinnia stems and in TEs, xylem fibers, and phloem fibers of old stems. CCoAOMT was also found to be specifically associated with all lignifying tissues, including TEs, xylem fibers, and phloem fibers in stems of forsythia, tobacco, alfalfa, soybean, and tomato (Lycopersicon esculentum). The presence of CCoAOMT was evident in xylem ray parenchyma cells of forsythia, tobacco, and tomato. In forsythia and alfalfa, pith parenchyma cells next to the vascular cylinder were lignified. Accordingly, marked accumulation of CCoAOMT in these cells was observed. Taken together, these results showed a close association of CCoAOMT expression with lignification in dicot plants. This supports the hypothesis that the CCoAOMT-mediated methylation branch is a general one in lignin biosynthesis during normal growth and development in dicot plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号