首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. The influence on the reactivities of the catalytic sites of papain (EC 3.4.22.2) and actinidin (3.4.22.14) of providing for interactions involving the S1-S2 intersubsite regions of the enzymes was evaluated by using as a series of thiol-specific two-hydronic-state reactivity probes: n-propyl 2-pyridyl disulphide (I) (a 'featureless' probe), 2-(acetamido)ethyl 2'-pyridyl disulphide (II) (containing a P1-P2 amide bond), 2-(acetoxy)ethyl 2'-pyridyl disulphide (III) [the ester analogue of probe (II)] and 2-carboxyethyl 2'-pyridyl disulphide N-methylamide (IV) [the retroamide analogue of probe (II)]. Syntheses of compounds (I), (III) and (IV) are reported. 2. The reactivities of the two enzymes towards the four reactivity probes (I)-(IV) and also that of papain towards 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide (VII) (containing both a P1-P2 amide bond and an L-phenylalanyl side chain as an occupant for the S2 subsite), in up to four hydronic (previously called protonic) states, were evaluated by analysis of pH-dependent stopped-flow kinetic data (for the release of pyridine-2-thione) by using an eight-parameter rate equation [described in the Appendix: Brocklehurst & Brocklehurst (1988) Biochem. J. 256, 556-558] to provide pH-independent rate constants and macroscopic pKa values. The analysis reveals the various ways in which the two enzymes respond very differently to the binding of ligands in the S1-S2 intersubsite regions despite the virtually superimposable crystal structures in these regions of the molecules. 3. Particularly striking differences between the behaviour of papain and that of actinidin are that (a) only papain responds to the presence of a P1-P2 amide bond in the probe such that a rate maximum at pH 6-7 is produced in the pH-k profile in place of the rate minimum, (b) only in the papain reactions does the pKa value of the alkaline limb of the pH-k profile change from 9.5 to approx. 8.2 [the value characteristic of a pH-(kcat./Km) profile] when the probe contains a P1-P2 amide bond, (c) only papain reactivity is affected by two positively co-operative hydronic dissociations with pKI congruent to pKII congruent to 4 and (d) modulation of the reactivity of the common -S(-)-ImH+ catalytic-site ion-pair (Cys-25/His-159 in papain and Cys-25/His-162 in actinidin) by hydronic dissociation with pKa approx. 5 is more marked and occurs more generally in reactions of actinidin than is the case for papain reactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. 2-(N'-Acetyl-L-phenylalanyl)hydroxyethyl 2'-pyridyl disulphide (compound V) was synthesized, and a study of the pH-dependence of the second-order rate constant (k) for its reaction with the catalytic-site thiol group of papain (EC 3.4.22.2) was used to evaluate the consequences for transition-state geometry of the presence of a hydrophobic occupant for the S2 subsite of the enzyme in the absence of the N-H component of the P1-P2 amide bond. 2. Comparison of the pH-dependences of K for reactions of compound (V), 2-(acetamido)ethyl 2'-pyridyl disulphide (compound I) and 2-(acetoxy)ethyl 2'-pyridyl disulphide (compound III) with the cysteine-proteinase minimal catalytic-site model, benzimidazol-2-ylmethanethiol, established the activation of all of these pyridyl disulphides by hydronation and that their reactivities are relatively insensitive to structural change in the non-pyridyl part of the molecule. The marked differences in their reactivities towards papain therefore derive from binding, either directly, or indirectly via signalling mechanisms. 3. Comparison of the kinetic data for the reaction of papain with compound (V) with those for analogous reactions with reactivity probes that provide opportunities for a variety of binding interactions in the S1-S2 intersubsite region and in the S2 subsite itself lead to the following conclusions: (a) the (Gly-66) N-H...O = C less than (P1-P2 ester) interaction of papain with compound (III) provides for better binding relative to that for a probe with a simple hydrocarbon side chain, but no signalling to the catalytic site to provide a (His-159)-ImH+-assisted transition state; (b) when this interaction is augmented either by a (P1-P2 amide) N-H...O = C less than (Asp-158) interaction (compound I) or hydrophobic P2/S2 contacts (compound V), signalling to the catalytic region occurs to provide the assisted transition state; (c) when both the P2/S2 contacts and the interaction involving Gly-66 exist, provision additionally of the (P1-P2 amide) N-H...O = C less than (Asp-158) interaction [as in 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide] serves only to assist the binding without an additional signalling effect. 4. Such studies promise to allow binding interactions that merely locate substrates in appropriate enzyme loci to be distinguished from those that transmit signals with a chemical consequence to catalytic sites.  相似文献   

3.
1. 2-(N'-Acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [compound (III)] and 2-(acetamido)ethyl 2'-pyridyl disulphide [compound (IV)] were synthesized by acylation of the common intermediate, 2-aminoethyl 2'-pyridyl disulphide, to provide examples of chromogenic thiol-specific substrate-derived two-protonic-state electrophilic probe reagents. These two reagents, together with n-propyl 2-pyridyl disulphide [compound (II)], provide structural variation in the non-pyridyl part of the molecule from a simple hydrocarbon side chain in compound (II) to a P1-P2 amide bond in compound (IV) and further to both a P1-P2 amide bond and a hydrophobic side chain (of phenylalanine) at P2 as a potential occupant of S2 subsites. 2. These disulphides were used as reactivity probes to investigate specificity and binding-site-catalytic-site signalling in a number of cysteine proteinases by determining (a) the reactivity at pH 6.0 at 25 degrees C at I 0.1 of compound (III) (a close analogue of a good papain substrate) towards 2-mercaptoethanol, benzimidazol-2-ylmethanethiol [compound (V), as a minimal catalytic-site model], chymopapains B1-B3, chymopapain A, papaya proteinase omega, actinidin, cathepsin B and papain, (b) the effect of changing the structure of the probe as indicated above on the reactivities of compound (V) and of the last five of these enzymes, and (c) the forms of pH-dependence of the reactivities of papain and actinidin towards compound (III). 3. The kinetic data suggest that reagents of the type investigated may be sensitive probes of molecular recognition features in this family of enzymes and are capable not only of detecting differences in binding ability of the various enzymes but also of identifying enzyme-ligand contacts that provide for binding-site-catalytic-site signalling mechanisms. 4. The particular value of this class of probe appears to derive from the possibility of activating the 2-mercaptopyridine leaving group not only by formal protonation, as was recognized previously [see Brocklehurst (1982) Methods Enzymol. 87C, 427-469], but also by hydrogen-bonding to the pyridyl nitrogen atom when the appropriate geometry in the catalytic site is provided by enzyme-ligand contacts involving the non-pyridyl part of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
1. 2-(N'-Acetyl-D-phenylalanylamino)ethyl 2'-pyridyl disulphide (compound I) [m.p. 123-124 degrees C; [alpha]20D -7.1 degrees (c 0.042 in methanol)] was synthesized, and the results of a study of the pH-dependence of the second-order rate constant (k) for its reaction with the catalytic-site thiol group of papain (EC 3.4.22.2), together with existing kinetic data for the analogous reaction of the L-enantiomer (compound II), were used to evaluate the consequences for transition-state geometry of the difference in chirality at the P2 position of the probe molecule. 2. The kinetic data suggest that the D-enantiomer binds approx. 40-fold less tightly to papain than the L-enantiomer but that the binding-site--catalytic-site signalling that results in a (His-159)-Im(+)-H-assisted transition state occurs equally effectively in the interaction of the former probe as in that of the latter. This results in pH-k profiles for the reactions of both enantiomers each characterized by four macroscopic pKa values (3.7-3.9, 4.1-4.3, 7.9-8.3 and 9.4-9.5) in which k is maximal at pH approx. 6 where the -Im(+)-H-assisted transition state is most fully developed. 3. Model building indicates that both enantiomers can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the binding pocket of the S2 subsite with preservation of the three hydrogen-bonding interactions involving the substrate analogue reagent and (Asp-158) C = O, (Gly-66) C = O, and (Gly-66)-N-H of papain. Earlier predictions that binding of N-acyl-D-phenylalanine derivatives to papain would be prevented on steric grounds [Berger & Schechter (1970) Philos. Trans. R. Soc. London B 257, 249-264; Lowe & Yuthavong (1971) Biochem. J. 124, 107-115; Lowe (1976) Tetrahedron 32, 291-302] were based on assumed models that are not consistent with the X-ray-diffraction data for papain inhibited by alkylation of Cys-25 with N-benzyloxycarbonyl-Phe-Ala-chloromethane [Drenth, Kalk & Swen (1976) Biochemistry 15, 3731-3738]. 4. The possibility that the kinetic expression of P2-S2 stereospecificity may depend on the nature of the chemistry occurring in the catalytic site of papain is discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The kinetics of the reactions of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) with the two-protonic-state reactivity probes 2,2'-dipyridyl disulphide, n-propyl 2-pyridyl disulphide and 4-(N-aminoethyl 2'-pyridyl disulphide)- 7-nitrobenzo-2-oxa-1,3-diazole (compound I) were studied over a wide range of pH. Differences between the reactivities of ficin and papain towards the cationic forms of the alkyl 2-pyridyl disulphide probes suggest that ficin contains a cationic site without exact analogue in papain, and the striking difference in the shapes of the pH-rate profiles for the reactions of the two enzymes with compound (1) suggests differences in the mobilities or dispositions of the active-centre histidine imidazole groups with respect to relevant hydrophobic binding areas. The evidence from reactivity-probe studies that the papain catalytic mechanism involves substantial repositioning of the active-centre imidazole group during the catalytic act does not apply also to ficin. If ficin contains an aspartic acid residue analogous to aspartic acid-158 in papain, the pKa of its carboxy group is probably significantly lower than the pKa of the analogous group in papain.  相似文献   

6.
4-(N-Aminoethyl 4-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole was synthesized and evaluted as a two-protonic-state reactivity probe by kinetic study of its reactions with papain (EC 3.4.22.2) and with benzimidazol-2-ylmethanethiol. Evidence is presented to suggest that: (i) both this probe molecule and its 2-pyridyl isomer bind to papain; (ii) the binding is followed by a change in the environment of the thiol group of cysteine-25; (iii) the striking rate maximum in neutral media observed in the reaction of papain with the 2-pyridyl isomer but not with the 4-pyridyl isomer arises from association of the 2-pyridyl leaving group with the imidazolium ion of histidine-159.  相似文献   

7.
1.2,2'-Dipyridyl disulphide (2-Py-S-S-2-Py) and n-propyl 2-pyridyl disulphide (propyl-S-S-2-Py) were used as two-protonic-state reactivity probes to investigate the active centre of papain (EC 3.4.22.2).2. The existence of a striking rate optimum at pH approx. 4 in the reaction of papain not only with the symmetrical probe but also with the unsymmetrical probe is shown to constitute compelling evidence that the thiolate ion component of the cysteine-25-histidine-159 interactive system of papain possesses appreciable nucleophilic character. It is not a necessary requirement that the probe reagent should engage the imidazolium ion of histidine-159 in hydrogen-bonding for the sulphur atom of the interactive system to display nucleophilic character. The single proton-binding site of propyl-S-S-2-Py cannot simultaneously interrupt the active-centre ion pair and provide for rate enhancement as the pH is lowered towards 4. The possible implication of this for the mechanism of papain-catalysed hydrolysis is discussed. 3. The suspected difference in the active centres of papain and ficin (EC 3.4.22.3), which could be a lack in ficin of a carboxy group conformationally equivalent to that of aspartic acid-158 of papain is confirmed. The reactivity of the papain thiol group towards both probe reagents is controlled by two ionizations with pKa close to 4 that are positively co-operative. 4. In the reaction of papain with 2-Py-S-S-2-Py. the reactivity appears to be controlled also by an addition ionization with pKa approx. 5. Possible origins of this additional ionization are discussed. K. The spectral and ionization characteristics of propyl-S-S-2-Py are reported. 6. The reagent reacts rapidly with thiol groups at the sulphur atom distal from the pyridyl ring to provide, at pH values below 9, stoicheiometric release of 2-thiopyridone. This property, together with the ability of the reagent markedly to increase its electrophilicity consequent on protonation, suggests alkyl-2-pyridyl disulphides in general as valuable two-protonic-state reactivity probes with exceptional specificity for thiol groups.  相似文献   

8.
1. 4-(N-2-Aminoethyl2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole (compound I) was synthesized and evaluated as a fluorescent labelling reagent for thiol groups. 2. The design of compound (I) as one example of a general type of reporter group delivery reagent (2-pyridyl-S-S-X, where X contains an environmentally sensitive spectroscopic probe) is discussed. 3. The electronic absorption spectrum of compound (I) was determined over a wide range of pH and the spectral changes that accompany its reaction with low-molecular-weight thiols, e.g. L-cysteine, and with papain (EC 3.4.22.2) and bovine serum albumin are discussed. 4. A new value of epsilon343 for 2-thiopyridone (Py-2-SH) was determined as 8.08 X 10(3) +/- 0.08 X 10(3)M-1-cm-1. 5. Spectral analysis of the reactions of compound (I) with L-cysteine and with papain (in the pH range 3.5-8.0) showed that even under equimolar conditions the reaction (thiol-disulphide interchange to release Py-2-SH) is essentially stoicheimoetric and probably proceeds by specific attack at the sulphur atom distal from the pyridyl ring of compound (I). 6. The fluorescence-emission spectra of compound (I) and of the products of its reaction with papain and with ficin (EC 3.4.22.3) were determined. Compound (I) is highly fluorescent in aqueous solution. Excitation within the intense visible absorption band (lambda max. 481 nm, epsilon max. 2.52 X 10(4)M-1-cm-1) provides green fluorescence with an emission maximum at 540 nm. Both papain and ficin labelled by reaction with compound (I) are characterized by fluorescence-emission maxima (535 nm and 530 nm respectively) of even higher intensity. The fluorescence emission of the product of the reaction of papain with compound (I) was shown to be 25 times more intense than that of the product of the reaction of papain with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride). 7. The second-order rate constants (k2) for the reactions of compound (I) and of Nbd chloride with GSH, papain, albumin, ficin, 2-benzimidazolylmethanethiol and 2-benzimidazolylethanethiol were determined at 25.0 degrees C and various pH values. At pH4 the values of k2(compound I)/k2(Nbd chloride) are: GSH, 288; albumin, 36; papain 3 X 10(3); ficin, 3 X 10(4). 8. The pH-k2 profiles for the reactions of compound (I) and of Nbd chloride with the two 2-benzimidazolylalkanethiols were determined. Of the four profiles only that for the reaction of compound (I) with 2-benzimidazolylmethanethiol is characterized by a striking rate maximum in acidic media.  相似文献   

9.
1. The pH-dependence of the second-order rate constant (k) for the reaction of actinidin (EC 3.4.22.14) with 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide was determined and the contributions to k of various hydronic states were evaluated. 2. The data were used to assess the consequences for transition-state geometry of providing P2/S2 hydrophobic contacts in addition to hydrogen-bonding opportunities in the S1-S2 intersubsite region. 3. The P2/S2 contacts (a) substantially improve enzyme-ligand binding, (b) greatly enhance the contribution to reactivity of the hydronic state bounded by pKa 3 (the pKa characteristic of the formation of catalytic-site-S-/-ImH+ state) and pKa 5 (a relatively minor contributor in reactions that lack the P2/S2 contacts), such that the major rate optimum occurs at pH 4 instead of at pH 2.8-2.9, and (c) reveal the kinetic influence of a pKa approx. 6.3 not hitherto observed in reactions of actinidin. 4. Possibilities for the interplay of electrostatic effects and binding interactions in both actinidin and papain (EC 3.4.22.2) are discussed.  相似文献   

10.
1. A Sepharose-(glutathione-2-pyridyl disulphide) conjugate has been prepared. 2. Its use in a new type of chromatography, covalent chromatography by thiol-disulphide interchange, is described. 3. With this technique, papain containing 1 intact catalytic site [thiol with high reactivity towards 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) at pH4] per mol of protein is readily prepared both from dried papaya latex and from commercial 2xcrystallized partially active papain. 4. The catalysis of the hydrolysis of alpha-N-benzoyl-l-arginine ethyl ester at pH6.0, 25.0 degrees C, I=0.3 by fully active papain thus prepared is characterized by K(m)=18.2+/-<0.1mm and k(cat.)=16.4+/-0.5s(-1).  相似文献   

11.
The characteristics of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2), two cysteine proteinases whose catalytic-site regions appear to superimpose to a degree that approaches atomic co-ordinate accuracy of both crystal structures, were evaluated by determining (a) the pH-dependence in acid media of the acylation process of the catalytic act (k+2/Ks) using N alpha-benzoyl-L-arginine p-nitroanilide (L-Bz-Arg-Nan) as substrate and (b) the sensitivity of the reactivity of the catalytic-site thiol group and its pH-dependence to structural change in small, thiol-specific, two-protonic-state reactivity probes (2,2'-dipyridyl disulphide and methyl 2-pyridyl disulphide) where enzyme-probe contacts should be restricted to areas close to the catalytic site. Distortion of the catalytic sites of the two enzymes at pH less than 4 was evaluated over time-scales appropriate for both stopped-flow reactivity probe kinetics (less than or equal to 1-2 s) and steady-state substrate catalysis kinetics (3-5 min) by using the 2,2'-dipyridyl disulphide monocation as a titrant for non-distorted catalytic sites. This permitted a lower pH limit to be defined for valid kinetic analysis of both types. The behaviour of the enzymes at pH less than 4 requires a kinetic model in which the apparently biomolecular reaction of enzyme with probe reagent is separated from the process leading to loss of conformational integrity by a potentially reversible step. The acylation of actinidin with L-Bz-Arg-Nan in acidic media occurs in two protonic states, one produced by raising the pH across pKa less than 4 which probably characterizes the formation of -S-/-ImH+ ion pair (pKa approx. 3) and the other, of higher reactivity, produced by raising the pH across pKa 5.5, which may characterize rearrangement of catalytic-site geometry. The pH-dependence of the acylation of papain by L-Bz-Arg-Nan is quite different and is not influenced by protonic dissociation with pKa values in the range 5-6. The earlier conclusion that the acylation of papain depends on two protonic dissociations each with pKa approx. 4 was confirmed. This argument is now more firmly based because titration with 2,2'-dipyridyl disulphide permits the loss of conformational integrity to be taken into account in the analysis of the kinetic data at very low pH. Methyl 2-pyridyl disulphide was synthesized by reaction of pyridine-2-thione with methyl methanethiolsulphonate and its pKa at I = 0.1 was determined by spectral analysis at 307 nm to be 2.8.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
1. A rapid method of isolation of fully active actinidin, the cysteine proteinase from Actinidia chinensis (Chinese gooseberry or kiwifruit), by covalent chromatography, was devised. 2. The active centre of actinidin was investigated by using n-propyl 2-pyridyl disulphide, 4-(N-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole and 4-chloro-7-nitrobenzofurazan as reactivity probes. 3. The presence in actinidin in weakly acidic media of an interactive system containing a nucleophilic sulphur atom was demonstrated. 4. The pKa values (3.1 and 9.6) that characterize this interactive system are more widely separated than those that characterize the interactive active centre systems of ficin (EC 3.4.22.3) and papain (EC 3.4.22.2) (3.8 and 8.6, and 3.9 and 8.8 respectively). 5. Actinidin was shown to resemble ficin rather than papain in (i) the disposition of the active-centre imidazole group with respect to hydrophobic binding areas, and (ii) the inability of the active-centre aspartic acid carboxy group to influence the reactivity of the active-centre thiol group at pH values of about 4. 6. The implications of the results for one-state and two-state mechanisms for cysteine-proteinase catalysis are discussed.  相似文献   

13.
1. Fully active ficin (EC 3.4.22.3) containing 1 mol of thiol with high reactivity towards 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) at pH4.5 per mol of protein was prepared from the dried latex of Ficus glabrata by covalent chromatography on a Sepharose-glutathione-2-pyridyl disulphide gel. 2. Ficin thus prepared is a mixture of ficins I-IV and ficin G, in which ficins II and III predominate. The various ficins exhibit similar reactivity characteristics towards 2-Py-S-S-2-Py. 3. Use of 2-Py-S-S-2-Py as a reactivity probe demonstrates (a) that in ficin, as in papain (EC 3.4.22.2), the active-centre thiol and imidazole groups interact to provide a nucleophilic state at pH values of approx. 6 additional to the uncomplicated thiolate ion that predominates at pH values over 9, and (b) a structural difference between ficin and papain that leads to a much higher rate of reaction of 2-Py-S-S-2-Py with ficin than with papain at pH values 3-4. This difference is suggested to include a lack in ficin of a carboxyl group conformationally equivalent to that of aspartic acid-158 in papain. 4. The high electrophilicity of the 2-Py-S-S-2PyH+ monocation allows directly the detection of the exposure of the buried thiol group of ficin at pH values below 4.  相似文献   

14.
The specificity of the S1 subsite of papain   总被引:1,自引:1,他引:0       下载免费PDF全文
The specificity of the S(1)' subsite of the proteolytic enzyme papain was investigated by studying the effect of l-alpha-amino acid amides on the enzyme-catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester and by determining the kinetic parameters for the enzyme-catalysed hydrolysis of some N-benzyloxycarbonylglycyl-l-amino acid amides. These studies showed that the S(1)' subsite has a predilection for hydrophobic residues, in particular l-leucine and l-tryptophan. The specificity for these residues is manifest in both the binding and acylation steps. N-Benzyloxycarbonylglycine amide is not hydrolysed under comparable conditions, indicating that the amide group adjacent to and on the C-terminal side of the peptide bond about to be cleaved makes an important contribution to the rate of the papain-catalysed hydrolysis of peptides.  相似文献   

15.
Structure determination of the inactive S554A variant of prolyl oligopeptidase complexed with an octapeptide has shown that substrate binding is restricted to the P4-P2' region. In addition, it has revealed a hydrogen bond network of potential catalytic importance not detected in other serine peptidases. This involves a unique intramolecular hydrogen bond between the P1' amide and P2 carbonyl groups and another between the P2' amide and Nepsilon2 of the catalytic histidine 680 residue. It is argued that both hydrogen bonds promote proton transfer from the imidazolium ion to the leaving group. Another complex formed with the product-like inhibitor benzyloxycarbonyl-glycyl-proline, indicating that the carboxyl group of the inhibitor forms a hydrogen bond with the Nepsilon2 of His(680). Because a protonated histidine makes a stronger interaction with the carboxyl group, it offers a possibility of the determination of the real pK(a) of the catalytic histidine residue. This was found to be 6.25, lower than that of the well studied serine proteases. The new titration method gave a single pK(a) for prolyl oligopeptidase, whose reaction exhibited a complex pH dependence for k(cat)/K(m), and indicated that the observed pK(a) values are apparent. The procedure presented may be applicable for other serine peptidases.  相似文献   

16.
Endo peptidyl epoxides, in which the central epoxidic moiety replaces the scissile amide bond of a P(3)-P(3)' peptide, were designed as cysteine proteases inhibitors. The additional P'-S' interactions, relative to those of an exo peptidyl epoxide of the same P(3)-P(1) sequence, significantly improved affinity to the enzymes papain and cathepsin B, but also changed the mode of inhibition from active-site directed inactivation to reversible competitive inhibition. Computational models rationalize the binding affinity and the inhibition mechanism.  相似文献   

17.
1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed.  相似文献   

18.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

19.
A heterobifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)propionate, was synthesized. Its N-hydroxysuccinimide ester group reacts with amino groups and the 2-pyridyl disulphide structure reacts with aliphatic thiols. A new thiolation procedure for proteins is based on this reagent. The procedure involves two steps. First, 2-pyridyl disulphide structures are introduced into the protein by the reaction of some of its amino groups with the N-hydroxysuccinimide ester sie of the reagent. The protein-bound 2-pyridyl disulphide structures are then reduced with dithiothreitol. This reaction can be carried out without concomitant reduction of native disulphide bonds. The technique has been used for the introduction of thiol groups de novo into ribonuclease, gamma-globulin, alpha-amylase and horseradish peroxidase. N-Succinimidyl 3-(2-pyridyldithio)propionate can also be used for the preparation of protein-protein conjugates. This application is based on the fact that protein-2-pyridyl disulphide derivatives (formed from the reaction of non-thiol proteins with the reagent) react with thiol-containing proteins (with native thiols or thiolated by, for example, the method described above) via thiol-disulphide exchange to form disulphide-linked protein-protein conjugates. This conjugation technique has been used for the preparation of an alpha-amylase-urease, a ribonuclease-albumin and a peroxidase-rabbit anti-(human transferrin) antibody conjugate. The disulphide bridges between the protein molecules can easily be split by reduction or by thiol-disulphide exchange. Thus conjugation is reversible. This has been demonstrated by scission of the ribonuclease-albumin and the alpha-amylase-urease conjugate into their components with dithiothreitol. N-Succinimidyl 3-(2-pyridyldithio)propionate has been prepared in crystalline form, in which state (if protected against humidity) it is stable on storage at room temperature (23 degrees C).  相似文献   

20.
A method is proposed by which site-specific reactivity probes that exhibit different reactivities in two ionization states can be used to detect association-activation phenomena that involve repositioning of acid/base groups in enzyme active centres. The pH-dependences of the apparent second-order rate constants (k) for the reactions of the thiol group of papain (EC 3.4.22.2) with a series of two-protonic-state reactivity probes are compared. The short-chain probes, 2,2'-dipyridyl disulphide and n-propyl 2-pyridyl disulphide, react at pH6 in adsorptive complexes and/or transition states with geometries that do not permit hydrogen-bonding of the pyridyl nitrogen atom with the active-centre imidazolium ion, as evidenced by the rate minima at pH6 and the rate maxima at pH4 provided by reagent protonation. Only when the probe molecule, e.g. 4-(N-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole [compound(III)], contains a long hydrophobic side chain is the reaction characterized by maximal rates at about pH6, as in the acylation step of the catalytic act (at pH6, k(compound III)/k(2,2'-dipyridyl disulphide) approximately 100). It is proposed that this striking difference in profile shape may result from binding of the hydrophobic side chain of compound (III) possibly in the S(2)-subsite of papain, which promotes a change in catalytic-site geometry involving repositioning of the imidazolium ion of histidine-159 and hydrogen-bonding with the N atom of the leaving group, as has been postulated to occur in the acylation step of substate hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号