首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The STAM family proteins, STAM1 and STAM2/EAST/Hbp, are phosphotyrosine proteins that contain SH3 domains and ubiquitin-interacting motifs. Their yeast homologue, Hse1, and its binding protein, Vps27, are involved in the vacuolar membrane transport machinery. Here we show that STAM1 and STAM2 are localized to the endosomal membrane. Some of these complexes contain Eps15, an endocytic protein, which accumulates in clumps upon expression of a dominant-negative form of Vps4-A, an AAA-type ATPase, that is required for normal endosome function. These results support the idea that the STAMs are mammalian vacuolar protein sorting (Vps) proteins. We also demonstrate that ligand-mediated epidermal growth factor receptor (EGFR) degradation is partially but not completely impaired in both Hrs(-/-) and STAM1(-/-)STAM2(-/-) mouse embryonic fibroblasts. Furthermore, endosome swelling is seen in both Hrs(-/-) and STAM1(-/-)STAM2(-/-) cells. These results suggest that the STAMs and Hrs play important roles in the mammalian endosomal/vacuolar protein sorting pathway.  相似文献   

2.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

3.
4.
The Sar1 GTPase coordinates the assembly of coat protein complex‐II (COPII) at specific sites of the endoplasmic reticulum (ER). COPII is required for ER‐to‐Golgi transport, as it provides a structural and functional framework to ship out protein cargoes produced in the ER. To investigate the requirement of COPII‐mediated transport in mammalian cells, we used small interfering RNA (siRNA)‐mediated depletion of Sar1A and Sar1B. We report that depletion of these two mammalian forms of Sar1 disrupts COPII assembly and the cells fail to organize transitional elements that coordinate classical ER‐to‐Golgi protein transfer. Under these conditions, minimal Golgi stacks are seen in proximity to juxtanuclear ER membranes that contain elements of the intermediate compartment, and from which these stacks coordinate biosynthetic transport of protein cargo, such as the vesicular stomatitis virus G protein and albumin. Here, transport of procollagen‐I is inhibited. These data provide proof‐of‐principle for the contribution of alternative mechanisms that support biosynthetic trafficking in mammalian cells, providing evidence of a functional boundary associated with a bypass of COPII .  相似文献   

5.
Annika Budnik 《FEBS letters》2009,583(23):3796-58
The first membrane trafficking step in the biosynthetic secretory pathway, the export of proteins and lipids from the endoplasmic reticulum (ER), is mediated by COPII-coated vesicles. In mammalian cells, COPII vesicle budding occurs at specialized sites on the ER, the so-called transitional ER (tER). Here, we discuss aspects of the formation and maintenance of these sites, the mechanisms by which cargo becomes segregated within them, and the propagation of ER exit sites (ERES) during cell division. All of these features are inherently linked to the formation, maintenance and function of the Golgi apparatus underlining the importance of ERES to Golgi function and more widely in terms of intracellular organization and cellular function.  相似文献   

6.
The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.  相似文献   

7.
We previously reported that the STAM family members STAM1 and STAM2 are phosphorylated on tyrosine upon stimulation with cytokines through the gammac-Jak3 signaling pathway, which is essential for T-cell development. Mice with targeted mutations in either STAM1 or STAM2 show no abnormality in T-cell development, and mice with double mutations for STAM1 and STAM2 are embryonically lethal; therefore, here we generated mice with T-cell-specific double mutations for STAM1 and STAM2 using the Cre/loxP system. These STAM1(-/-) STAM2(-/-) mice showed a significant reduction in thymocytes and a profound reduction in peripheral mature T cells. In proliferation assays, thymocytes derived from the double mutant mice showed a defective response to T-cell-receptor (TCR) stimulation by antibodies and/or cytokines, interleukin-2 (IL-2) and IL-7. However, signaling events downstream of receptors for IL-2 and IL-7, such as activations of STAT5, extracellular signal-regulated kinase (ERK), and protein kinase B (PKB)/Akt, and c-myc induction, were normal in the double mutant thymocytes. Upon TCR-mediated stimulation, prolonged activations of p38 mitogen-activated protein kinase and Jun N-terminal protein kinase were seen, but activations of ERK, PKB/Akt, and intracellular calcium flux were normal in the double mutant thymocytes. When the cell viability of cultured thymocytes was assessed, the double mutant thymocytes died more quickly than controls. These results demonstrate that the STAMs are indispensably involved in T-cell development and survival in the thymus through the prevention of apoptosis but are dispensable for the proximal signaling of TCR and cytokine receptors.  相似文献   

8.
To what extent the secretory pathway is regulated by cellular signaling is unknown. In this study, we used RNA interference to explore the function of human kinases and phosphatases in controlling the organization of and trafficking within the secretory pathway. We identified 122 kinases/phosphatases that affect endoplasmic reticulum (ER) export, ER exit sites (ERESs), and/or the Golgi apparatus. Numerous kinases/phosphatases regulate the number of ERESs and ER to Golgi protein trafficking. Among the pathways identified, the Raf–MEK (MAPK/ERK [extracellular signal-regulated kinase] kinase)–ERK cascade, including its regulatory proteins CNK1 (connector enhancer of the kinase suppressor of Ras-1) and neurofibromin, controls the number of ERESs via ERK2, which targets Sec16, a key regulator of ERESs and COPII (coat protein II) vesicle biogenesis. Our analysis reveals an unanticipated complexity of kinase/phosphatase-mediated regulation of the secretory pathway, uncovering a link between growth factor signaling and ER export.  相似文献   

9.
Golgi stacks are often located near sites of "transitional ER" (tER), where COPII transport vesicles are produced. This juxtaposition may indicate that Golgi cisternae form at tER sites. To explore this idea, we examined two budding yeasts: Pichia pastoris, which has coherent Golgi stacks, and Saccharomyces cerevisiae, which has a dispersed Golgi. tER structures in the two yeasts were visualized using fusions between green fluorescent protein and COPII coat proteins. We also determined the localization of Sec12p, an ER membrane protein that initiates the COPII vesicle assembly pathway. In P. pastoris, Golgi stacks are adjacent to discrete tER sites that contain COPII coat proteins as well as Sec12p. This arrangement of the tER-Golgi system is independent of microtubules. In S. cerevisiae, COPII vesicles appear to be present throughout the cytoplasm and Sec12p is distributed throughout the ER, indicating that COPII vesicles bud from the entire ER network. We propose that P. pastoris has discrete tER sites and therefore generates coherent Golgi stacks, whereas S. cerevisiae has a delocalized tER and therefore generates a dispersed Golgi. These findings open the way for a molecular genetic analysis of tER sites.  相似文献   

10.
COPII proteins facilitate membrane transport from the endoplasmic reticulum (ER) to the Golgi. They are highly conserved, although there are variations in their subcellular localization across plant, animal and yeast cells. Such variations may be needed to suit the unique organization of the ER and Golgi in the different cell systems. Earlier bioinformatics analyses have indicated that the Arabidopsis nuclear genome may encode chloroplast isoforms of the cytosolic trafficking protein machineries, including COPI and COPII, for vesicular transport within chloroplasts. These analyses suggest the intriguing possibility that plants may have evolved or adapted COP-like proteins to suit membrane trafficking events within specialized organelles. Here, we discuss recent data on the distribution and activity of the product of the At5g18570 locus, which encodes a putative chloroplast isoform of Sar1, the GTPase that regulates COPII assembly on the surface of the ER. Evidence is accumulating that the protein is targeted to the chloroplasts, that it has GTPase activity and that it may have a role in thylakoid membrane development, supporting the possibility that COPII-like trafficking machinery may be active in chloroplasts.  相似文献   

11.
Cargo proteins exiting the endoplasmic reticulum en route to the Golgi are typically carried in 60-70 nm vesicles surrounded by the COPII protein coat. Some secretory cargo assemblies in specialized mammalian cells are too large for transport within such carriers. Recent studies on procollagen-I and chylomicron trafficking have reached conflicting conclusions regarding the role of COPII proteins in ER exit of these large biological assemblies. COPII is no doubt essential for such transport in vivo, but it remains unclear whether COPII envelops the membrane surrounding large cargo or instead plays a more indirect role in transport carrier biogenesis.  相似文献   

12.
Protein trafficking between the endoplasmic reticulum (ER) and Golgi apparatus is central to cellular homeostasis. ER export signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the Golgi. Norwalk virus nonstructural protein p22 contains a YXΦESDG motif that mimics a di-acidic ER export signal in both sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved human norovirus motif is therefore an appealing target for antiviral drug development.  相似文献   

13.
Proteins that enter the secretory pathway are transported from their place of synthesis in the endoplasmic reticulum to the Golgi complex by COPII-coated carriers. The networks of proteins that regulate these components in response to extracellular cues have remained largely elusive. Using high-throughput microscopy, we comprehensively screened 378 cytoskeleton-associated and related proteins for their functional interaction with the coat protein complex II (COPII) components SEC23A and SEC23B. Among these, we identified a group of proteins associated with focal adhesions (FERMT2, MACF1, MAPK8IP2, NGEF, PIK3CA, and ROCK1) that led to the downregulation of SEC23A when depleted by siRNA. Changes in focal adhesions induced by plating cells on ECM also led to the downregulation of SEC23A and decreases in VSVG transport from ER to Golgi. Both the expression of SEC23A and the transport defect could be rescued by treatment with a focal adhesion kinase inhibitor. Altogether, our results identify a network of cytoskeleton-associated proteins connecting focal adhesions and ECM-related signaling with the gene expression of the COPII secretory machinery and trafficking.  相似文献   

14.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

15.
Sec7p directs the transitions required for yeast Golgi biogenesis   总被引:6,自引:0,他引:6  
Endoplasmic reticulum (ER)-to-Golgi traffic in yeast proceeds by the maturation of membrane compartments from post-ER vesicles to intermediate small vesicle tubular clusters (VTCs) to Golgi nodular membrane networks (Morin-Ganet et al., Traffic 2000; 1: 56–68). The balance between ER and Golgi compartments is maintained by COPII- and COPI-mediated anterograde and retrograde traffic, which are dependent on Sec7p and ARF function. The sec7-4 temperature-sensitive allele is a mutation in the highly conserved Sec7 domain (Sec7d) found in all ARF-guanine nucleotide exchange factor proteins. Post-ER trafficking is rapidly inactivated in sec7-4 mutant yeast at the restrictive temperature. This conditional defect prevented the normal production of VTCs and instead generated Golgi-like tubes emanating from the ER exit sites. These tubes progressively developed into stacked cisternae defining the landmark sec7 mutant phenotype. Consistent with the in vivo results, a Sec7d peptide inhibited ER-to-Golgi transport and displaced Sec7p from its membrane anchor in vitro . The similarities in the consequences of inactivating Sec7p or ARFs in vivo was revealed by genetic disruption of yeast ARFs or by addition of brefeldin A (BFA) to whole cells. These treatments, as in sec7-4 yeast, affected the morphology of membrane compartments in the ER-Golgi transition. Further evidence for Sec7p involvement in the transition for Golgi biogenesis was revealed by in vitro binding between distinct domains of Sec7p with ARFs, COPI and COPII coat proteins. These results suggest that Sec7p coordinates membrane transitions in Golgi biogenesis by directing and scaffolding the binding and disassembly of coat protein complexes to membranes, both at the VTC transition from ER exit sites to form Golgi elements and for later events in Golgi maturation.  相似文献   

16.
Kang BH  Staehelin LA 《Protoplasma》2008,234(1-4):51-64
Plant Golgi stacks are mobile organelles that can travel along actin filaments. How COPII (coat complex II) vesicles are transferred from endoplasmic reticulum (ER) export sites to the moving Golgi stacks is not understood. We have examined COPII vesicle transfer in high-pressure frozen/freeze-substituted plant cells by electron tomography. Formation of each COPII vesicle is accompanied by the assembly of a ribosome-excluding scaffold layer that extends approximately 40 nm beyond the COPII coat. These COPII scaffolds can attach to the cis-side of the Golgi matrix, and the COPII vesicles are then transferred to the Golgi together with their scaffolds. When Atp115-GFP, a green fluorescent protein (GFP) fusion protein of an Arabidopsis thaliana homolog of the COPII vesicle-tethering factor p115, was expressed, the GFP localized to the COPII scaffold and to the cis-side of the Golgi matrix. Time-lapse imaging of Golgi stacks in live root meristem cells demonstrated that the Golgi stacks alternate between phases of fast, linear, saltatory movements (0.9-1.25 microm/s) and slower, wiggling motions (<0.4 microm/s). In root meristem cells, approximately 70% of the Golgi stacks were connected to an ER export site via a COPII scaffold, and these stacks possessed threefold more COPII vesicles than the Golgi not associated with the ER; in columella cells, only 15% of Golgi stacks were located in the vicinity of the ER. We postulate that the COPII scaffold first binds to and then fuses with the cis-side of the Golgi matrix, transferring its enclosed COPII vesicle to the cis-Golgi.  相似文献   

17.
The coat complex COPII forms vesicles at the endoplasmic reticulum to transport a variety of cargo proteins to the Golgi structure. Recent biochemical and structural studies reveal the molecular mechanism of cargo protein recognition by COPII components. Furthermore, there are at least two distinct ER-to-Golgi transport carrier structures carrying different cargo proteins in yeast and mammalian cells, suggesting several distinct mechanisms for the concentration, selection and exit of cargo proteins from the ER. It will be essential to follow the dynamics of transitional ER sites and cargo protein concentration within the ER in order to understand how these transport processes occur in living cells.  相似文献   

18.
The variant surface glycoprotein (VSG) of bloodstream form Trypanosoma brucei (Tb) is a critical virulence factor. The VSG glycosylphosphatidylinositol (GPI)-anchor strongly influences passage through the early secretory pathway. Using a dominant-negative mutation of TbSar1, we show that endoplasmic reticulum (ER) exit of secretory cargo in trypanosomes is dependent on the coat protein complex II (COPII) machinery. Trypanosomes have two orthologues each of the Sec23 and Sec24 COPII subunits, which form specific heterodimeric pairs: TbSec23.1/TbSec24.2 and TbSec23.2/TbSec24.1. RNA interference silencing of each subunit is lethal but has minimal effects on trafficking of soluble and transmembrane proteins. However, silencing of the TbSec23.2/TbSec24.1 pair selectively impairs ER exit of GPI-anchored cargo. All four subunits colocalize to one or two ER exit sites (ERES), in close alignment with the postnuclear flagellar adherence zone (FAZ), and closely juxtaposed to corresponding Golgi clusters. These ERES are nucleated on the FAZ-associated ER. The Golgi matrix protein Tb Golgi reassembly stacking protein defines a region between the ERES and Golgi, suggesting a possible structural role in the ERES:Golgi junction. Our results confirm a selective mechanism for GPI-anchored cargo loading into COPII vesicles and a remarkable degree of streamlining in the early secretory pathway. This unusual architecture probably maximizes efficiency of VSG transport and fidelity in organellar segregation during cytokinesis.  相似文献   

19.
Exit of cargo molecules from the endoplasmic reticulum (ER) for transport to the Golgi is the initial step in intracellular vesicular trafficking. The coat protein complex II (COPII) machinery is recruited to specialized regions of the ER, called ER exit sites (ERES), where it plays a central role in the early secretory pathway. It has been known for more than two decades that calcium is an essential factor in vesicle trafficking from the ER to Golgi apparatus. However, the role of calcium in the early secretory pathway is complicated and poorly understood. We and others previously identified Sec31A, an outer cage component of COPII, as an interacting protein for the penta-EF-hand calcium-binding protein ALG-2. In this study, we show that another calcium-binding protein, annexin A11 (AnxA11), physically associates with Sec31A by the adaptor function of ALG-2. Depletion of AnxA11 or ALG-2 decreases the population of Sec31A that is stably associated with the ERES and causes scattering of juxtanuclear ERES to the cell periphery. The synchronous ER-to-Golgi transport of transmembrane cargoes is accelerated in AnxA11- or ALG-2-knockdown cells. These findings suggest that AnxA11 maintains architectural and functional features of the ERES by coordinating with ALG-2 to stabilize Sec31A at the ERES.  相似文献   

20.
The Mohr-Tranebjaerg-Jensen deafness-dystonia-optic atrophy protein DDP/TIMM8a is translated on cytoplasmic ribosomes but targeted ultimately to the mitochondrial intermembrane space, where it is involved in mitochondrial protein import. STAM1 is a cytoplasmic signal-transducing adaptor molecule implicated in cytokine signaling. We report here a direct interaction between DDP and STAM1, identified by yeast two-hybrid screening and confirmed by co-immunoprecipitation, fusion protein "pull downs," and nuclear redistribution assays. DDP coordinates Zn(2+), and Zn(2+) was found to stimulate the DDP-STAM1 interaction in vitro. Endogenous STAM1 localizes predominantly to early endosomes, and we found no evidence that STAM1 is imported into mitochondria in vitro. Thus, the DDP-STAM1 interaction likely occurs in the cytoplasm or at the mitochondrial outer membrane. The DDP-STAM1 interaction requires a coiled-coil region in STAM1 that overlaps with the immunoreceptor tyrosine-based activation motif (ITAM), a region previously shown to be important for interaction with Jak2/3 and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Thus, DDP binding may alter the interactions of STAM1 with several cytoplasmic proteins involved in cell signaling and endosomal trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号