首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caffeoyl CoA O-methyltransferases (OMTs) have been characterized from numerous plant species and have been demonstrated to be involved in lignin biosynthesis. Higher plant species are known to have additional caffeoyl CoA OMT-like genes, which have not been well characterized. Here, we identified two new caffeoyl CoA OMT-like genes by screening a cDNA library from specialized hair cells of pods of the orchid Vanilla planifolia. Characterization of the corresponding two enzymes, designated Vp-OMT4 and Vp-OMT5, revealed that in vitro both enzymes preferred as a substrate the flavone tricetin, yet their sequences and phylogenetic relationships to other enzymes are distinct from each other. Quantitative analysis of gene expression indicated a dramatic tissue-specific expression pattern for Vp-OMT4, which was highly expressed in the hair cells of the developing pod, the likely location of vanillin biosynthesis. Although Vp-OMT4 had a lower activity with the proposed vanillin precursor, 3,4-dihydroxybenzaldehyde, than with tricetin, the tissue specificity of expression suggests it may be a candidate for an enzyme involved in vanillin biosynthesis. In contrast, the Vp-OMT5 gene was mainly expressed in leaf tissue and only marginally expressed in pod hair cells. Phylogenetic analysis suggests Vp-OMT5 evolved from a cyanobacterial enzyme and it clustered within a clade in which the sequences from eukaryotic species had predicted chloroplast transit peptides. Transient expression of a GFP-fusion in tobacco demonstrated that Vp-OMT5 was localized in the plastids. This is the first flavonoid OMT demonstrated to be targeted to the plastids.  相似文献   

2.
l-threo-3,4-Dihydroxyphenylserine (DOPS) is a chiral unnatural β-hydroxy amino acid used for the treatment of Parkinson disease. We developed a continuous bioconversion system for DOPS production that uses whole-cell biocatalyst of recombinant Escherichia coli expressing l-threonine aldolase (l-TA) genes cloned from Streptomyces avelmitilis MA-4680. Maximum conversion rates were observed at 2 M glycine, 145 mM 3,4-dihydroxybenzaldehyde, 0.75% Triton-X, 5 g E. coli cells/l, pH 6.5 and 10°C. In the optimized condition, overall productivity was 8 g/l, which represents 40 times the synthesis yield possible with no optimization of conditions.  相似文献   

3.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

4.
An aspen lignin-specific O-methyltransferase (bi-OMT; S-adenosyl-l-methionine: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase, EC 2.1.1.68) antisense sequence in the form of a synthetic gene containing the cauliflower mosaic virus 35S gene sequences for enhancer elements, promoter and terminator was stably integrated into the tobacco genome and inherited in transgenic plants with a normal phenotype. Leaves and stems of the transgenes expressed the antisense RNA and the endogenous tobacco bi-OMT mRNA was suppressed in the stems. Bi-OMT activity of stems was decreased by an average of 29% in the four transgenic plants analyzed. Chemical analysis of woody tissue of stems for lignin building units indicated a reduced content of syringyl units in most of the transgenic plants, which corresponds well with the reduced activity of bi-OMT. Transgenic plants with a suppressed level of syringyl units and a level of guaiacyl units similar to control plants were presumed to have lignins of distinctly different structure than control plants. We concluded that regulation of the level of bi-OMT expression by an antisense mechanism could be a useful tool for genetically engineering plants with modified lignin without altering normal growth and development.Abbreviations OMT O-methyltransferase - bi-OMT bispecific O-methyltransferase - CAD cinnamyl alcohol dehydrogenase - Ptomt1 Populus tremuloides bi-OMT cDNA clone  相似文献   

5.
A major limitation on the expression of some foreign proteins in transgenic plants is the toxic effect of such proteins on the host plant resulting in inhibition of normal growth and development. A solution to this problem is to control the expression of genes for such proteins by means of inducible promoters, as is frequently done in microbial systems. A cDNA clone was obtained from subtractive hybridization of non-harvested and harvested alfalfa leaf tissue, named hi12. The hi12 cDNA was identified as part of the S-adenosyl-l-methionine: trans-caffeoyl-CoA3-O-methyltransferase gene of alfalfa, a gene encoding an essential key enzyme in lignin synthesis. The hi12 gene was strongly induced by harvesting and wounding but not by heat shock. The promoter of the hi12 gene, isolated by genomic walking, contained several stress response cis-elements. Transgenic plants of tobacco and Medicago truncatula containing the GUS gene driven by the promoter showed GUS expression following harvesting, demonstrating the activity of these regulatory regions in other plant species.  相似文献   

6.
: Rat pineal hydroxyindole-O-methyltransferase is controlled similarly to adrenal medullary phenylethanolamine N-methyltransferase. S-adenosylmethionine (SAM), the in vivo cofactor utilized by the enzyme to convert N-acetylserotonin to melatonin, protects this methyltransferase against tryptic proteolysis in vitro. Furthermore, in vivo studies suggest that the nucleoside itself is controlled by glucocorticoids. Hypophysectomy decreases hydroxyindole-O-methyltransferase levels as compared with control animals, while dexamethasone and SAM administration restore enzyme levels toward control values. In vitro proteolytic studies further demonstrate that, although N-acetylserotonin does not stabilize the enzyme against trypsinization, this substrate acts synergistically with SAM to confer greater stabilization than observed with SAM alone.  相似文献   

7.
Suspension cultures of Habanero pepper (Capsicum chinense Jacq.) were exposed to salicylic acid or methyl jasmonate to change secondary metabolism. Both treatments led to the accumulation of capsaicinoids and their late biosynthetic intermediate, vanillin. Both elicitors had a positive effect on the activities of phenylalanine ammonia lyase and coumarate O-methyltransferase, but none of them represented the main limiting step for capsaicinoid accumulation since vanillin contents were two orders of magnitude higher than those of capsaicinoids.  相似文献   

8.
1. Pharmacogenomics is the study of the role of inheritance in variation in the drug response phenotype—a phenotype that can vary from adverse drug reactions at one end of the spectrum to lack of therapeutic efficacy at the other.2. The thiopurine S-methyltransferase (TPMT) genetic polymorphism represents one of the best characterized and most clinically relevant examples of pharmacogenomics. This polymorphism has also served as a valuable “model system” for studies of the ways in which variation in DNA sequence might influence function.3. The discovery and characterization of the TPMT polymorphism grew directly out of pharmacogenomic studies of catechol O-methyltransferase (COMT), an enzyme discovered by Julius (Julie) Axelrod and his coworkers.4. This review will outline the process by which common, functionally significant genetic polymorphisms for both COMT and TPMT were discovered and will use these two methyltransferase enzymes to illustrate general principles of pharmacogenomic research—both basic mechanistic and clinical translational research—principles that have been applied to a series of genes encoding methyltransferase enzymes.  相似文献   

9.
The case studies focus on two types of enzyme applications for pharmaceutical development. Demethylmacrocin O-methyltransferase, macrocin O-methyltransferase (both putatively rate-limiting) and tylosin reductase were purified from Streptomyces fradiae, characterized and the genes manipulated for increasing tylosin biosynthesis in S. fradiae. The rate-limiting enzyme, deacetoxycephalosporin C (DAOC) synthase/hydroxylase (expandase/ hydroxylase), was purified from Cephalosporium acremonium, its gene over-expressed, and cephalosporin C biosynthesis improved in C. acremonium. Also, heterologous expression of penicillin N epimerase and DAOC synthase (expandase) genes of Streptomyces clavuligerus in Penicillium chrysogenum permitted DAOC production in the fungal strain. Second, serine hydroxymethyltransferase of Escherichia coli and phthalyl amidase of Xanthobacter agilis were employed in chemo-enzymatic synthesis of carbacephem. Similarly, echinocandin B deacylase of Actinoplanes utahensis was used in the second-type synthesis of the ECB antifungal agent. Received 07 March 1997/ Accepted in revised form 15 June 1997  相似文献   

10.
Vanillin cultures of Clostridium formicoaceticum produced higher cell densities than did vanillate cultures. During growth at the expense of vanillin, vanillate was the predominat intermediate formed; 3,4-dihydroxybenzaldehyde was not a significantly detectable intermediate. Acetate and protocatechuate were both produced in equimolar ratio relative to vanillin consumption. 4-Hydroxybenzaldehyde was a growth-supportive aromatic compound for both C. formicoaceticum and Clostridium aceticum (doubling times approximated 5 h), was oxidized stoichiometrically to 4-hydroxybenzoate, and was not appreciably toxic at concentrations up to 15 mM. Acetate was (i) the major reduced end product detected concomitant to growth and to benzaldehyde oxidation and (ii) formed in close approximation to the following stoichiometry: 4 4-hydroxybenzaldehyde + 2CO2+2H2O4 4-hydroxybenzoate + CH3COOH. We conclude that these two acetogens are capable of benzaldehyde-coupled acetogenesis and growth.  相似文献   

11.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

12.
A new chromatographic catechol O-methyltransferase (COMT) assay based on S-adenosyl- -[methyl-14C]methionine and on-line radioactivity detection was developed. With minor modifications in the mobile phase composition the methylation velocities for 30 structurally diverse compounds including simple catechols, neurotransmitters, catecholestrogens and catecholic drugs could be measured using human and rat recombinant soluble COMT. The enzymes showed very similar substrate selectivities. The radiochemical method was validated using 3,4-dihydroxybenzoic acid as a model substrate and it was shown that accurate and reproducible methylation velocity values could be achieved for both of the catecholic hydroxyls. The method proved to be suited for determining the enzyme kinetic parameters and can probably be further used for gathering enzyme kinetic data on differentially substituted catechols in order to construct proper structure-activity relationships for COMT.  相似文献   

13.
We have demonstrated that Penicillium chrysogenum possesses the l-cysteine biosynthetic enzyme O-acetyl-l-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates the potential for increasing the overall yield in penicillin production by enhancing the enzymatic activity of this microorganism. Only O-acetyl-l-serine sulphhydrylase and O-acetyl-l-homoserine sulphhydrylase (EC 4.2.99.10) have been demonstrated to use O-acetyl-l-serine as substrate for the formation of l-cysteine. The purified␣enzyme did not catalyse the formation of l-homocysteine from O-acetyl-l-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyl-l-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold in relation to the cell-free extract. Two bands, showing exactly the same intensity, were present on a sodium dodecyl sulphate/polyacrylamide gel, and the molecular masses of these were estimated to be 59 kDa and 68 kDa respectively. The K m value for O-acetyl-l-serine and V max of O-acetyl-l-serine sulphhydrylase were estimated to be 1.3 mM and 14.9 μmol/mg protein−1 h−1 respectively. The activity of the purified enzyme had a temperature optimum of approximately 45 °C, which is much higher than the actual temperature for penicillin synthesis. Furthermore, O-acetyl-l-serine sulphhydrylase activity was to have a maximum in the range of pH 7.0–7.4. Received: 20 March 1998 / Received revision: 27 July 1998 / Accepted: 12 August 1998  相似文献   

14.
Glucuronoyl esterase is a novel carbohydrate esterase recently discovered in the cellulolytic system of the wood-rotting fungus Schizophyllum commune on the basis of its ability to hydrolyze methyl ester of 4-O-methyl-d-glucuronic acid. This substrate was not fully corresponding to the anticipated function of the enzyme to hydrolyze esters between xylan-bound 4-O-methyl-d-glucuronic acid and lignin alcohols occurring in plant cell walls. In this work we showed that the enzyme was capable of hydrolyzing two synthetic compounds that mimic the ester linkages described in lignin-carbohydrate complexes, esters of 4-O-methyl-d-glucuronic and d-glucuronic acid with 3-(4-methoxyphenyl)propyl alcohol. A comparison of kinetics of hydrolysis of methyl and 3-(4-methoxyphenyl)propyl esters indicated that the glucuronoyl esterase recognizes the uronic acid part of the substrates better than the alcohol type. The catalytic efficiency of the enzyme was much higher with the ester of 4-O-methyl-d-glucuronic acid than with that of d-glucuronic acid. Examination of the action of glucuronoyl esterase on a series of methyl esters of 4-O-methyl-d-glucopyranuronosyl residues α-1,2-linked to xylose and several xylooligosaccharides suggested that the rate of deesterification is independent of the character of the carbohydrate part glycosylated by the 4-O-methyl-d-glucuronic acid.  相似文献   

15.
The assimilatory nitrate reductase (NR) from the cyanobacteriumAnabaena doliolum was membrane bound and solubilized by sonication. The Km value of the enzyme was 870 µM for nitrate with dithionite-reduced methyl viologen (MV) as electron donor. The pH optimum was 10.5 in the MV assay. Nitrate acted as an inducer and ammonium as repressor of the enzyme synthesis. In the presence ofl-methionine-d,l-sulfoximine (MSX) or azaserine, inhibitors of the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway, ammonium did not exhibit any inhibitory effect on the enzyme. The photosynthetic nature of NR was shown with PS II inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). This enzyme fromA. doliolum has been shown to be a light-driven process, requiring de novo protein synthesis. It was inhibited by chlorate, the structural analog of nitrate;p-chloromercuribenzoate, a thiol reagent; sodium tungstate; and certain cations.  相似文献   

16.
Biosynthesis of flavonoid derivatives requires enzyme(s) having high reactivity as well as regioselectivity. We have synthesized 3-O-kaempferol from naringenin using two enzymes. The first reaction, in which naringenin is converted to kaempferol, is mediated by flavonol synthase (FLS). An FLS (PFLS) with strong catalytic activity was cloned and characterized from the genome sequence of the poplar (Populus deltoides). PFLS consists of a 1,008 bp ORF encoding a 38 kDa protein. PFLS was expressed in Escherichia coli with a glutathione-S-transferase (GST) tagging. The purified recombinant PFLS was characterized. Catalytically, it was more efficient than the previously characterized FLSs. A mixture of two E. coli transformants harboring either PFLS or ROMT9 (a kaempferol 3-O-methyltransferase) converted naringenin into 3-O-methylkaempferol.  相似文献   

17.
The mRNA-capping process starts with the conversion of a 5′-triphosphate end into a 5′-diphosphate by an RNA triphosphatase, followed by the addition of a guanosine monophosphate unit in a 5′-5′ phosphodiester bond by a guanylyltransferase. Methyltransferases are involved in the third step of the process, transferring a methyl group from S-adenosyl-l-methionine to N7-guanine (cap 0) and to the ribose 2′OH group (cap 1) of the first RNA nucleotide; capping is essential for mRNA stability and proper replication. In the genus Flavivirus, N7-methyltransferase and 2′O-methyltransferase activities have been recently associated with the N-terminal domain of the viral NS5 protein. In order to further characterize the series of enzymatic reactions that support capping, we analyzed the crystal structures of Wesselsbron virus methyltransferase in complex with the S-adenosyl-l-methionine cofactor, S-adenosyl-l-homocysteine (the product of the methylation reaction), Sinefungin (a molecular analogue of the enzyme cofactor), and three different cap analogues (GpppG, N7MeGpppG, and N7MeGpppA). The structural results, together with those on other flaviviral methyltransferases, show that the capped RNA analogues all bind to an RNA high-affinity binding site. However, lack of specific interactions between the enzyme and the first nucleotide of the RNA chain suggests the requirement of a minimal number of nucleotides following the cap to strengthen protein/RNA interaction. Our data also show that, following incubation with guanosine triphosphate, Wesselsbron virus methyltransferase displays a guanosine monophosphate molecule covalently bound to residue Lys28, hinting at possible implications for the transfer of a guanine group to ppRNA. The structures of the Wesselsbron virus methyltransferase complexes obtained are discussed in the context of a model for N7-methyltransferase and 2′O-methyltransferase activities.  相似文献   

18.
Biotechnological production of ferulic acid, a precursor of vanillin, is an attractive alternative for various industries due to the high price and demand for natural ferulic acid. Feruloyl esterase has been identified as a key enzyme involved in microbial transformations of ferulic acid to vanillin. Several fungal feruloyl esterases have been purified and characterized for their use in the production of ferulic acid. This paper, for the first time, discusses the use of lactic acid bacteria for the production of ferulic acid. Specifically, we have used Lactobacillus cells and microencapsulation so that ferulic acid can be produced continuously using various types of fermentation systems. Bacteria were encapsulated in alginate-poly-l-lysine-alginate (APA) microcapsules, and the production of ferulic acid by lactobacilli was detected using a real-time high-performance liquid chromatography (HPLC)-based assay. Results show that ferulic acid can be produced using microencapsulated Lactobacillus fermentum (ATCC 11976) with significant levels of biological feruloyl esterase activity.  相似文献   

19.
Selenocysteine methyltransferase (SMT), specifically methylates selenocysteine (SeCys) to produce the nonprotein amino acid Se-methyl selenocysteine (SeMSC) and played key role of removing selenium toxic effect at higher levels to the plant. Here we report the cloning of a cDNA encoding selenocysteine methyltransferase from Camellia sinensis (CsSMT) and expression of CsSMT in Escherichia coli. CsSMT isolated by RT-PCR and RACE-PCR reaction. CsSMT is a 1,401 bp cDNA with an open reading frame predicted to encode a 351 amino acid, 40.5 kDa protein; The predicted amino acid sequences of CsSMT shows 74% identity with A. bisulcatus selenocysteine methyltransferase (AbSMT) and 69% identity with Broccoli (Brassica oleracea var. italica) selenocysteine methyltransferase (BoSMT), and shares 53, 73 and 65% identity, respectively, with Arabidopsis thaliana homocysteine S-methyltransferase AtHMT1, AtHMT2, and AtHMT3, and 65% to Zea mays homocysteine S-methyltransferase (ZmHMT2). Analyses of CsSMT showed that it lacks obvious chloroplast or mitochondrial targeting sequences and contains a consensus sequence of GGCC for a possible zinc-binding motif near the C-terminal and a conserved Cys residue upstream of the zinc-binding motif as other related methyltransferases. Expression of CsSMT correlated with the presence of SMT enzyme activity in cell extracts, and bacteria containing recombinant CsSMT plasmid showed much high tolerance to selenate and selenite.  相似文献   

20.
The rumen anaerobic fungusPiromonas communis, unlike the rumen anaerobic fungiNeocallimastix frontalis andNeocallimastix patriciarum, produced extracellular α-(4-O-methyl)-d-glucuronidase when grown in cultures containing filter-paper, barley straw, birchwood xylan or birchwood sawdust as carbon source. The highest concentration of enzyme was produced in cultures containing birchwood sawdust. The aldobiouronic acidO-α-(4-O-methyl-d-glucopyran-osyluronic acid)-(1 → 2)-d-xylopyranose (MeGlcAXyl) was the best substrate of those tested: the aldotriouronic acidO-α-(4-O-methyl-d-glucopyranosyluronic acid (1 → 2)-O-\-d-xylopyranosyl-(1 → 4)-d-xylopyranose (MeGlcAXyl2) and the aldotetraouronic acidO-α-(4-O-methyl-d-glucopyranosyluronic acid)-(1 → 2)-O-\-d-xylopyranosyl-(1 → 4)-O-\-d-xylopyranosyl-(1 → 4)-d-xylopyranose (MeGlcAXyl3) were also attacked but the rate fell as the degree of polymerisation increased. When the same substituted xylooligosaccharides were reduced to the corresponding alditols the enzyme activity disappeared. Similarly,p-nitrophenyl-α-d-glucuronide was not a substrate. Remarkably, the relative rates of attack shown by the α-(4-O-methyl)-d-glucuronidase on the aldouronic acids and on xylans extracted from birchwood, oat spelts and oat straw differed according to the carbon source used to produce the enzyme. The α-(4-O-methyl)-d-glucuronidase had a pH optimum of 5.5 and a temperature optimum of 50°C. On gel filtration the enzyme was shown to be associated with proteins covering the range 100–300 kDa, but a major peak of activity in the column effluent appeared to have a molecular mass of 103 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号