首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

2.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17). Here we examined the inhibitory properties of the full-length and the N-terminal domain form of TIMP-4 (N-TIMP-4) with TACE and showed that N-TIMP-4 is a far superior inhibitor than its full-length counterpart. Although full-length TIMP-4 displayed negligible activity against TACE, N-TIMP-4 is a slow tight-binding inhibitor with low nanomolar binding affinity. Our findings suggested that the C-terminal subdomains of the TIMPs have a significant impact over their activities with the ADAMs. To elucidate further the molecular basis that underpins TIMP/TACE interactions, we sculpted N-TIMP-4 with the surface residues of TIMP-3, the only native TIMP inhibitor of the enzyme. Transplantation of only three residues, Pro-Phe-Gly, onto the AB-loop of N-TIMP-4 resulted in a 10-fold enhancement in binding affinity; the K(i) values of the resultant mutant were almost comparable with that of TIMP-3. Further mutation at the EF-loop supported our earlier findings on the preference of TACE for leucine at this locus. Drawing together our previous experience in TACE-targeted mutagenesis by using TIMP-1 and -2 scaffolds, we have finally resolved the mystery of the selective sensitivity of TACE to TIMP-3.  相似文献   

3.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

4.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

5.
The mammalian collagenases are a subgroup of the matrix metalloproteinases (MMPs) that are uniquely able to cleave triple helical fibrillar collagens. Collagen breakdown is an essential part of extracellular matrix turnover in key physiological processes including morphogenesis and wound healing; however, unregulated collagenolysis is linked to important diseases such as arthritis and cancer. The tissue inhibitors of metalloproteinases (TIMPs) function in controlling the activity of MMPs, including collagenases. We report here the structure of a complex of the catalytic domain of fibroblast collagenase (MMP-1) with the N-terminal inhibitory domain of human TIMP-1 (N-TIMP-1) at 2.54 A resolution. Comparison with the previously reported structure of the TIMP-1/stromelysin-1 (MMP-3) complex shows that the mechanisms of inhibition of both MMPs are generally similar, yet there are significant differences in the protein-protein interfaces in the two complexes. Specifically, the loop between beta-strands A and B of TIMP-1 makes contact with MMP-3 but not with MMP-1, and there are marked differences in the roles of individual residues in the C-D connector of TIMP-1 in binding to the two MMPs. Structural rearrangements in the bound MMPs are also strikingly different. This is the first crystallographic structure that contains the truncated N-terminal domain of a TIMP, which shows only minor differences from the corresponding region of the full-length protein. Differences in the interactions in the two TIMP-1 complexes provide a structural explanation for the results of previous mutational studies and a basis for designing new N-TIMP-1 variants with restricted specificity.  相似文献   

6.
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better Ki value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.  相似文献   

7.
The avid binding of tissue inhibitors of metalloproteinases (TIMPs) to matrix metalloproteinases (MMPs) is crucial for the regulation of pericellular and extracellular proteolysis. The interactions of the catalytic domain (cd) of MMP-1 with the inhibitory domains of TIMP-1 and TIMP-2 (N-TIMPs) and MMP-3cd with N-TIMP-2 have been characterized by isothermal titration calorimetry and compared with published data for the N-TIMP-1/MMP-3cd interaction. All interactions are largely driven by increases in entropy but there are significant differences in the profiles for the interactions of both N-TIMPs with MMP-1cd as compared with MMP-3cd; the enthalpy change ranges from small for MMP-1cd to highly unfavorable for MMP-3cd (-0.1 ± 0.7 versus 6.0 ± 0.5 kcal mol(-1)). The heat capacity change (ΔC(p)) of binding to MMP-1cd (temperature dependence of ΔH) is large and negative (-210 ± 20 cal K(-1) mol(-1)), indicating a large hydrophobic contribution, whereas the ΔC(p) values for the binding to MMP-3cd are much smaller (-53 ± 3 cal K(-1) mol(-1)), and some of the entropy increase may arise from increased conformational entropy. Apart from differences in ionization effects, it appears that the properties of the MMP may have a predominant influence in the thermodynamic profiles for these N-TIMP/MMP interactions.  相似文献   

8.
Snake venom metalloproteinases (SVMPs) have recently been shown to interact with proteins containing von Willebrand factor A (VWA) domains, including the extracellular matrix proteins collagen XII, collagen XIV, matrilins 1, 3 and 4, and von Willebrand factor (VWF) via their cysteine-rich domain. We extended those studies using surface plasmon resonance to investigate the interaction of SVMPs with VWF, and demonstrated that jararhagin, a PIII SVMP containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains, catrocollastatin C, a disintegrin-like/cysteine-rich protein, and the recombinant cysteine-rich domain of atrolysin A (A/C) all interacted with immobilized VWF in a dose-dependent fashion. Binding of VWF in solution to immobilized A/C was inhibited by ristocetin and preincubation of platelets with A/C abolished ristocetin/VWF-induced platelet aggregation, indicating that the interaction of A/C with VWF is mediated by the VWA1 domain. Jararhagin cleaved VWF at sites adjacent to the VWA1 domain, whereas atrolysin C, a SVMP lacking the cysteine-rich domain, cleaved VWF at dispersed sites. A/C and catrocollastatin C completely inhibited the digestion of VWF by jararhagin, demonstrating that the specific interaction of jararhagin with VWF via the VWA1 domain is necessary for VWF proteolysis. In summary, we localized the binding site of PIII SVMPs in VWF to the A1 domain. This suggests additional mechanisms by which SVMPs may interfere with the adhesion of platelets at the site of envenoming. Thus, specific interaction of cysteine-rich domain-containing SVMPs with VWF may function to promote the hemorrhage caused by SVMP proteolysis of capillary basements and surrounding stromal extracellular matrix.  相似文献   

9.
Wei S  Xie Z  Filenova E  Brew K 《Biochemistry》2003,42(42):12200-12207
The four tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors that regulate the activity of matrix metalloproteinases (MMPs) and certain disintegrin and metalloproteinase (ADAM) family proteases in mammals. The protease inhibitory activity is present in the N-terminal domains of TIMPs (N-TIMPs). In this work, the N-terminal inhibitory domain of the only TIMP produced by Drosophila (dN-TIMP) was expressed in Escherichia coli and folded in vitro. The purified recombinant protein is a potent inhibitor of human MMPs, including membrane-type 1-MMP, although it lacks a disulfide bond that is conserved in all other known N-TIMPs. Titration with the catalytic domain of human MMP-3 [MMP-3(DeltaC)] showed that dN-TIMP prepared by this method is correctly folded and fully active. dN-TIMP also inhibits, in vitro, the activity of the only two MMPs of Drosophila, dm1- and dm2-MMPs, indicating that the Drosophila TIMP is an endogenous inhibitor of the Drosophila MMPs. dN-TIMP resembles mammalian N-TIMP-3 in strongly inhibiting human tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17) but is a weak inhibitor of human ADAM10. Models of the structures of dN-TIMP and N-TIMP-3 are strikingly similar in surface charge distribution, which may explain their functional similarity. Although the gene duplication events that led to the evolutionary development of the four mammalian TIMPs might be expected to be associated with functional specialization, Timp-3 appears to have conserved most of the functions of the ancestral TIMP gene.  相似文献   

10.
The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop. This region in N-TIMP is known to be essential for inhibitory activity against the matrix metalloproteinases and suggests that this region is of equal importance for NTR PCOLCE1, although the specific functional activity of the NTR PCOLCE1 domain is still unknown. Dynamics observed within the structural core of NTR PCOLCE1 that are not observed in N-TIMP molecules suggest that although the two domains have a similar architecture, the NTR PCOLCE1 domain will show different thermodynamic properties on binding and hence the target molecule could be somewhat different from that observed for the TIMPs. ModelFree order parameters show that NTR PCOLCE1 has more flexibility than both N-TIMP-1 and N-TIMP-2.  相似文献   

11.
Residues 1-127 of human TIMP-2 (N-TIMP-2), comprising three of the disulfide-bonded loops of the TIMP-2 molecule, is a discrete protein domain that folds independently of the C-terminal domain. This domain has been shown to be necessary and sufficient for metalloproteinase inhibition and contains the major sites of interaction with the catalytic N-terminal domain of active matrix metalloproteinases (MMPs). Residues identified as being involved in the interaction with MMPs by NMR chemical shift perturbation studies and TIMP/MMP crystal structures have been altered by site-directed mutagenesis. We show, by measurement of association rates and apparent inhibition constants, that the specificity of these N-TIMP-2 mutants for a range of MMPs can be altered by single site mutations in either the TIMP "ridge" (Cys1-Cys3 and Ser68-Cys72) or the flexible AB loop (Ser31-Ile41). This work demonstrates that it is possible to engineer TIMPs with altered specificity and suggests that this form of protein engineering may be useful in the treatment of diseases such as arthritis and cancer where the selective inhibition of key MMPs is desirable.  相似文献   

12.
The matrix metalloproteinases (MMPs) are enzymes involved in the turnover of the extracellular matrix. Their overexpression in tumors is implicated in the metastatic process and may provide a target for diagnostic tumor imaging by using a radiolabeled inhibitor. MMPs are inhibited by endogenous tissue inhibitors of metalloproteinases (TIMPs). Thus, TIMPs are potential targeting molecules which could be used as vehicles for selective radionuclide delivery by virtue of their binding to MMPs. The aim of this work was to produce a radiopharmaceutical with which to evaluate this potential. The 127 amino acid N-terminal domain of recombinant human TIMP-2 (N-TIMP-2) was conjugated with the bifunctional chelator diethylenetriamine pentaacetic acid (DTPA). Singly modified DTPA-N-TIMP-2 conjugate (identified by electrospray ionization mass spectrometry) was isolated by anion-exchange chromatography. The primary site of DTPA modification on N-TIMP-2 was mapped to lysine-116, which is distant from the site of MMP interaction. The conjugate was radiolabeled with indium-111 to give 111In-DTPA-N-TIMP-2 with a specific activity of at least 4 MBq/microg and a radiochemical yield and purity of >95%, by incubation with 111InCl3, without need for postlabeling purification. The product was sterile, pyrogen-free, and stable in serum over 48 h and retained full inhibitory activity in a fluorimetric binding assay. With these attributes, 111In-DTPA-N-TIMP-2 is a suitable radiopharmaceutical for in vivo biological and clinical investigation of the potential benefits of imaging MMP expression.  相似文献   

13.
Extracellular matrix remodeling and degradation are of great importance in both physiological and pathological situations. Matrix metalloproteinases (MMPs) and their natural occurring inhibitors - tissue inhibitors of metalloproteinases (TIMPs) - are involved in matrix turnover. Among the TIMPs there is only little specificity for inhibiting individual MMPs. In this report we describe the mutational analysis of the interaction of human TIMP-4 with several MMPs. The effects of different substitutions of residue 2 (Ser(2)) in the inhibitory domain of TIMP-4 were determined by kinetic measurements. Size, charge and polarity of residue 2 in the TIMP structure are key factors in MMP inhibition.  相似文献   

14.
The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3   总被引:2,自引:0,他引:2  
Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3. Further probing with hydroxamate inhibitors indicates that both forms of TACE have similar active site configurations. Our findings highlight the potential role of the C-terminal domains of ADAM proteinases in influencing TIMP interactions.  相似文献   

15.
The tight regulation of extracellular matrix remodeling and degradation is of great importance in physiological processes like development and morphogenesis, as well as in pathological situations like tumor invasion and metastasis. Tissue inhibitors of metalloproteinases (TIMPs) are the naturally occuring inhibitors of matrix metalloproteinases, which are involved in matrix turnover. In this report we describe the cloning of human TIMP-4 from a human adenocarcinoma and an osteosarcoma cell line and the expression of the inhibitory domain in the methylotrophic yeast Pichia pastoris. The inhibition of MMP-8, -9, -12, -13 and -14 by the N-terminal domain of TIMP-4 was analysed. Using a fluorescent MCA-peptide, Ki values for each subclass of MMPs were determined. With dissociation constants in the nanomolar range, TIMP-4 seems to be a good inhibitor for all classes of MMPs without remarkable preference for special MMPs.  相似文献   

16.
Rattlesnake venom can differ in composition and in metalloproteinase-associated activities. The molecular basis for this intra-species variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) remains an enigma. To understand the molecular basis for intra-species variation of metalloproteinase-associated activities, we modeled the three-dimensional structures of four metalloproteinases based on the amino acid sequence of four variations of the proteinase domain of the C. s. scutulatus metalloproteinase gene (GP1, GP2, GP3, and GP4). For comparative purposes, we modeled the atrolysin metalloproteinases of C. atrox as well. All molecular models shared the same topology. While the atrolysin metalloproteinase molecular models contained highly conserved substrate binding sites, the Mojave rattlesnake metalloproteinases showed higher structural divergence when superimposed onto each other. The highest structural divergence among the four C. s. scutulatus molecular models was located at the northern cleft wall and the S’1-pocket of the substrate binding site, molecular regions that modulate substrate selectivity. Molecular dynamics and field potential maps for each C. s. scutulatus metalloproteinase model demonstrated that the non-hemorrhagic metalloproteinases (GP2 and GP3) contain highly basic molecular and field potential surfaces while the hemorrhagic metalloproteinases GP1 and atrolysin C showed extensive acidic field potential maps and shallow but less dynamic active site pockets. Hence, differences in the spatial arrangement of the northern cleft wall, the S’1-pocket, and the physico-chemical environment surrounding the catalytic site contribute to differences in metalloproteinase activities in the Mojave rattlesnake. Our results provide a structural basis for variation of metalloproteinase-associated activities in the rattlesnake venom of the Mojave rattlesnake.  相似文献   

17.
We previously reported that tumor necrosis factor-alpha converting enzyme (TACE) was specifically inhibited by TIMP-3 but not TIMP-1, -2, and -4. Further mutagenesis studies showed that the N-terminal domain of TIMP-3 (N-TIMP-3) retained full inhibitory activity towards TACE. Full-length TIMP-3 and N-TIMP-3 exhibited indistinguishable values for the association rate constant and inhibitory affinity constant for the active catalytic domain of TACE (k(on) approximately 10(5) M(-1) s(-1) and K(app)(i) approximately 0.20 nM). Moreover, their k(on) (approximately 10(4) M(-1) s(-1)) and K(app)(i) (approximately 1.0 nM) values with a longer form of TACE (which encompasses the complete ectodomain including disintegrin, EGF and Crambin-like domains) were also shown to be similar. Detailed kinetic analyses indicated that TIMP-3 associated more quickly and with tighter final binding with TACE devoid of these C-terminal domains. We conclude that, unlike the interaction between many MMPs and TIMPs, the C-terminal domains of TIMP-3 and TACE are not essential in the formation of a tight binary complex.  相似文献   

18.
The tissue inhibitors of metalloproteinases (TIMPs) are a family of four secreted inhibitors of matrix metalloproteinases (MMPs). Recently, additional functions have been attributed to the TIMPs, including cell growth and inhibition of angiogenesis. In particular, we demonstrated that TIMP-3 overexpression using gene transfer induces apoptosis in a variety of cell types and can inhibit vascular neointima formation in vivo. However, little is know about the mechanisms underlying TIMP-3-mediated apoptosis. Here, using both purified recombinant proteins and novel adenoviral vectors we demonstrate that the prodeath domain of TIMP-3 is located within the N-terminal three loops of TIMP-3. Although both wild type and N-terminal TIMP-3 proteins promoted apoptosis, a T-2/T-3 chimera, in which the N-terminal three loops of TIMP-3 are replaced by those of TIMP-2, failed to induce cell death. Furthermore, a point mutation at residue 1 of TIMP-3 totally abolished MMP-inhibitory activity of TIMP-3 and also failed to promote apoptosis. This study demonstrates, using multiple apoptosis assays, that the prodeath function of TIMP-3 is located within the N-terminal three loops and the presence of functional metalloproteinase-inhibitory activity is associated with the induction of apoptosis.  相似文献   

19.
TIMP-3 (tissue inhibitor of metalloproteinases 3) is unique among the TIMP inhibitors, in that it effectively inhibits the TNF-α converting enzyme (TACE). In order to understand this selective capability of inhibition, we crystallized the complex formed by the catalytic domain of recombinant human TACE and the N-terminal domain of TIMP-3 (N-TIMP-3), and determined its molecular structure with X-ray data to 2.3 Å resolution. The structure reveals that TIMP-3 exhibits a fold similar to those of TIMP-1 and TIMP-2, and interacts through its functional binding edge, which consists of the N-terminal segment and other loops, with the active-site cleft of TACE in a manner similar to that of matrix metalloproteinases (MMPs). Therefore, the mechanism of TIMP-3 binding toward TACE is not fundamentally different from that previously elucidated for the MMPs. The Phe34 phenyl side chain situated at the tip of the relatively short sA-sB loop of TIMP-3 extends into a unique hydrophobic groove of the TACE surface, and two Leu residues in the adjacent sC-connector and sE-sF loops are tightly packed in the interface allowing favourable interactions, in agreement with predictions obtained by systematic mutations by Gillian Murphy's group. The combination of favourable functional epitopes together with a considerable flexibility renders TIMP-3 an efficient TACE inhibitor. This structure might provide means to design more efficient TIMP inhibitors of TACE.  相似文献   

20.
Aggrecanases are considered to play a key role in the destruction of articular cartilage during the progression of arthritis. Here we report that the N-terminal inhibitory domain of tissue inhibitor of metalloproteinases 3 (N-TIMP-3), but not TIMP-1 or TIMP-2, inhibits glycosaminoglycan release from bovine nasal and porcine articular cartilage explants stimulated with interleukin-1alpha or retinoic acid in a dose-dependent manner. This inhibition is due to the blocking of aggrecanase activity induced by the catabolic factors. Little apoptosis of primary porcine chondrocytes is observed at an effective concentration of N-TIMP-3. These results suggest that TIMP-3 may be a candidate agent for use against cartilage degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号