首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hall, R. D. and Yeoman, M. M. 1987. Intercellular and interculturalheterogeneity in secondary metabolite accumulation in culturesof Catharanthus roseus following cell line selection.—J.exp. Bot. 38: 1391–1398. Anthocyanin accumulation in a stock culture of Catharanthusroseus was consistently found, using microscopic and microdensitometrictechniques, to involve only c. 10% of the cell population. However,an analysis of 26 cell lines isolated from this culture hasindicated that all of the cells within the culture were, theoretically,capable of anthocyanin synthesis. Nevertheless, these linesdid display substantially different capacities for anthocyaninaccumulation. Detailed studies on individual cells from thesecultures have revealed that the variation in accumulation wasprimarily due to differing proportions of pigmented (i.e. productive)cells rather than differing mean intracellular anthocyanin concentrationswithin these cells. Both the proportion of productive cellsand the overall culture yield of the cell lines varied by >30-fold whereas the mean intracellular anthocyanin concentrationvaried by < 2-fold. The relevance of these results to thepossible control mechanisms involved in secondary metaboliteproduction in this and other culture systems is discussed. Key words: Catharanthus roseus, cell culture, anthocyanin, heterogeneity  相似文献   

2.
Gynura bicolor DC., a traditional vegetable in Japan, is cultivated as Kinjisou and Suizenjina in Ishikawa and Kumamoto prefectures, respectively. The adaxial side of the leaves of G. bicolor grown in a field is green, and the abaxial side is reddish purple. It has been reported that these reddish purple pigments are anthocyanins. Although we established a culture system of G. bicolor, the leaves of G. bicolor plants grown under our culture conditions showed green color on both sides of all leaves. We investigated the effects of phytohormones and chemical treatments on anthocyanin accumulation in cultured plants. Although anthocyanin accumulation in the leaves was slightly stimulated, anthocyanins accumulation in the roots of the cultured plant was induced remarkably by 25–50 μM methyl jasmonate (MJ) treatment. This induction was affected by light irradiation and sucrose concentration in the culture medium. However, salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid did not induce anthocyanin accumulation in roots. And then, combinations of MJ and SA or MJ and AgNO3 did not stimulate the anthocyanin accumulation in the root as found in the case of treatment by MJ solely.  相似文献   

3.
Axillary shoot proliferation of blue honeysuckle   总被引:2,自引:0,他引:2  
Callus cultures of Ajuga reptans flowers produced a complex mixture of cyanidin- and delphinidin-based pigments, of which more than 90% were acylated. The anthocyanin composition varied little during one growth period. During a time span of 5 years no new anthocyanin classes appeared. Quantitative differences in anthocyanin composition between the callus lines and during a 5 year time span were more pronounced. In general, the accumulation of delphinidin-based anthocyanins decreased. The percentage of acylated anthocyanins was stable in time. The accumulation of metabolically evolved anthocyanins (5′-substituted and acylated) decreased during passage from solid culture to liquid culture. The accumulation of acylated anthocyanins was influenced by the type of aeration in liquid cultures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Anthocyanins, responsible for the various attractive colors in plants, are becoming important alternative to many synthetic colorants due to increased public concerns over the safety of artificial food colors. Production of anthocyanins by plant cell cultures has been suggested as a feasible technology that has attracted considerable industrial and academic interests in the past two decades. This paper is to provide an overview of the present status and the future prospects in the commercial development of plant cell cultures for production of anthocyanins. The focus is on the strategies for enhancement of anthocyanin biosynthesis to achieve an economically viable technology for commercial applications. Through strain improvement, optimization of media and culture conditions, and intelligent process strategies such as elicitation and two-stage system, significant enhancement in productivity has been achieved in a number of cultures. However the yield of anthocyanins obtained so far is still far away from the full potential of anthocyanin synthesis by plant cell cultures. Further improvements require the insights on the regulation of anthocyanin synthesis, accumulation, storage and breakdown that will eventually lead to genetic manipulation of anthocyanin biosynthesis. Many studies have elucidated the metabolic pathway of anthocyanin biosynthesis. Preliminary studies on the regulation of anthocyanin biosynthesis on the levels of genes and enzymes are reviewed, showing that it is feasible to clone genes from secondary metabolism with an improved yield of anthocyanins. There is currently no commercial-scale trial for production of anthocyanin by plant cell cultures, but an intelligent integration of those existing strategies could provide a technology for industrial application competitive to the current production methods.  相似文献   

5.
6.
Anthocyanins are the largest and best studied group of plant pigments. However, not very much is known about the fate of these phenolic pigments after they have accumulated in the cell vacuoles of plant tissues. We have previously shown that magnesium treatment of ornamentals during the synthesis of anthocyanins in the flowers or foliage caused an increase in the pigment concentration. In this study, we characterized the effect of magnesium on the accumulation of anthocyanin in red cell suspension originating from Vitis vinifera cv. Gamay Red grapes. Magnesium treatment of the cells caused a 2.5- to 4.5-fold increase in anthocyanin concentration, with no substantial induction of the biosynthetic genes. This treatment inhibited the degradation of anthocyanins occurring in the cells, and changed the ratio between different anthocyanins determining cell color, with an increase in the relative concentration of the less stable pigment molecules. The process by which magnesium treatment affects anthocyanin accumulation is still not clear. However, the results presented suggest at least part of its effect on anthocyanin accumulation stems from inhibition of the pigments’ catabolism. When anthocyanin biosynthesis was inhibited, magnesium treatments prevented the constant degradation of anthocyanins in the cell suspension. Future understanding of the catabolic processes undergone by anthocyanins in plants may enable more efficient inhibition of this process and increased accumulation of these pigments, and possibly of additional phenolic compounds.  相似文献   

7.
Previously, it has been demonstrated that the red light-inducedanthocyanin accumulation in mung bean seedlings is mediatedby phytochrome [Dumortier and Vendrig Z. Pflanzenphysiol. 87:313 (1978)]. In this paper the importance of phytochrome forthe accumulation of anthocyanins in seedlings of mung beanswas studied in non-irradiated seedlings and in seedlings irradiatedwith 5 min R. A short FR-irradiation given early after sowing reduced theamount of anthocyanins which were normally found in non-irradiatedseedlings. This indicates that PFR may be important for at leastpart of the anthocyanin synthesis in the dark. As for the redlight-mediated anthocyanin accumulation, irradiation appearedto be most effective when given to seedlings at the age of 36–48hr. Although the seedlings were sensitive to red light irradiationbefore that time, they were not able to synthesize anthocyaninsuntil they had reached the age of 36 hr. Complete escape ofred/far-red reversibility occurred only when far-red was given12 hr after red, although partial escape could be observed witha shorter time-interval. Furthermore, the time-course of anthocyaninaccumulation after a two-fold R-irradiation was compared withthe effect of a single R-exposure. From the results could beconcluded that the pattern of anthocyanin accumulation is dependenton the time during which PFR is present in the seedlings. Theseexperiments also indicate that PFR not only plays a role inthe synthesis of anthocyanins but probably also in their degradation. The results of our study show that phytochrome is importantfor anthocyanin accumulation in non-irradiated mung bean seedlingsas well as in R-irradiated, and that it probably is also involvedin the degradation of the pigment. (Received January 18, 1982; Accepted April 30, 1982)  相似文献   

8.
In pigmented cells of Vitis vinifera suspension cultures, best accumulation of anthocyanins was obtained when nitrate concentration was reduced from 25 mM to 6.25 mM and when sucrose concentration was increased from 88 mM to 132 mM. Under such conditions growth was greatly decreased. However, cell viability was maintained. The increases in anthocyanins in pigmented cells were due largely to increases in peonidin — glucoside. The high sucrose and the low nitrate concentrations can be one of the important culture factors in controlling of anthocyanin production by cell cultures.  相似文献   

9.
In suspension cultures of Vitis sp., maximal accumulation ofanthocyanin was observed during the stationary phase. Accumulationof anthocyanin occurred in parallel with the cessation of celldivision under conditions such as a reduction of the concentrationof phosphate in the medium, or the presence of aphidicolin,an inhibitor of DNA synthesis. By contrast, in suspension culturesof Phytolacca americana, aphidicolin inhibited the accumulationof betacyanin and cell division. When aphidicolin was removedfrom cells by washing, partially synchronized division of cellswas induced and the accumulation of betacyanin also occurred,in conjunction with cell division. In the absence of phosphatefrom the medium, cell division did not occur and accumulationof betacyanin also ceased. Readdition of phosphate to cellsstarved for phosphate induced both cell division and the accumulationof betacyanin. These results indicate a positive correlationbetween the accumulation of betacyanin and cell division inPhytolacca which contrasts with a negative correlation betweenthe accumulation of anthocyanin and cell division in Vitis. (Received April 17, 1989; Accepted December 23, 1989)  相似文献   

10.
Summary Anthocyanin production of two lines ofVitis vinifera cell cultures, i.e., 5.4 and 13.1, which were obtained from the same starting material after 20 and 37 mo. of clonal selection, respectively, was investigated. Cell suspension cultures of lines 5.4 and 13.1 maintained an anthocyanin content of 0.44 ± 0.15 and 1.02 ± 0.31 mg·g−1 fresh weight during 50 and 32 weekly maintenance subcultures, respectively. Under anthocyanin-promoting culture conditions, both lines showed an enhancement of their anthocyanin level by approximately fourfold. While line 5.4 accumulated peonidin 3-glucoside and cyanidin 3-glucoside in decreasing order, line 13.1 accumulated primarily peonidin 3-p-coumaroylglucoside with lesser amounts of malvidin monoglucoside. Results show that while the anthocyanin content was improved during the course of repeated selections, the anthocyanin composition was modified markedly favoring the accumulation of more metabolically-advanced anthocyanins.  相似文献   

11.
细胞均一性对葡萄细胞生长和花青素合成的影响   总被引:1,自引:1,他引:0  
通过色差筛选法建立了一个相对均一的葡萄细胞悬浮系E,其细胞团较小,在长期继代培养过程中花青素合成能力的变异系数为8.7%,重复摇瓶实验的变异系数为5%。以E为实验材料进行的各组前体饲喂、诱导子添加、光照等联合作用实验,其生物量和花青素合成的变异系数均可控制在12%以内,充分说明了培养体系的均一性对维持稳定生产的重要性;黑暗条件下添加30μmol/L苯丙氨酸(Phe)和218μmol/L茉莉酸甲酯(MeJA)可使单位细胞花青素含量达到对照组的5.89倍,花青素产量为对照组的4.30倍,且连续5次继代培养过程中生物量和花青素合成的变异系数均比对照组降低。  相似文献   

12.
In the blue flowers of Italian bellflower (Campanula isophyllaMoretti), the formation of anthocyanins progresses from simpleunacylated anthocyanins, delphinidin 3–glucoside and bisdeacylplatyconin,through a series of progressively-acylated and glycosylatedcompounds, including diacylated violdelphin and monodeacylcampanin,to the triacylated campanin. In this study, anthocyanin andflavone contents were very low in buds until a few days beforeanthesis, after which they increased rapidly. Bisdeacylplatyconinand luteolin 7-O -glucoside peaked 2 d before anthesis. Themore complicated luteolin glucosides peaked 2 d after anthesis,slightly preceding monodeacylcampanin and campanin. Total anthocyanincontent peaked approx. 5 d after anthesis followed by a slowdecline. The highest total flavone content was reached at anthesis,after which it remained almost constant, but with some changesin the proportion of individual compounds. In the investigationtwo phenotypes were used, types B and C. Acylation of monodeacylcampaninto campanin is blocked in type B, but not in type C plants.Conversion of bisdeacylplatyconin into acylated anthocyaninswas shown to be slower in type C than in type B plants. Campanula isophylla ; Campanulaceae; Italian bellflower; anthocyanin; flavone; biosynthesis; flower development  相似文献   

13.
The present study prospects Bridelia stipularis (L.) Blume as a new source of anthocyanins through leaf and internode explants-derived callus cultures. Murashige and Skoog (MS) medium fortified with 21.48 μM α-naphthaleneacetic acid was superior for callus growth. Of the different regimes, the anthocyanin production relied on synergic effects of plant growth regulators, pH, light, and carbon source. The calluses incubated in light on MS medium with 4% glucose containing 2.22 μM N6-benzyladenine (BA) and 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D) at pH 3.5 yielded the highest amount (a mean of 0.42 mg g−1 callus) of anthocyanins. Subsequent cultures of the calluses on the above medium yielded a stable production of anthocyanins. Medium containing glucose was superior to that with sucrose for anthocyanin formation. Kinetin was inhibitory to anthocyanin accumulation. Suspension cultures of MS medium containing 2.26 μM 2,4-D and 2.22 μM BA at pH 5.0 started excretion of anthocyanins into the medium on reaching to pH 4.4–4.6.  相似文献   

14.
The production of anthocyanin in Catharanthus roseus flowers from both field-grown and regenerated by somatic embryogenesis plants and cell cultures was described. The anthocyanins were identified as the 3-O-glucosides, and the 3-O-(6-O-p-coumaroyl) glucosides of hirsutidin, malvidin and petunidin, respectively both in vivo and in vitro. The influence of environmental conditions on in vitro anthocyanin accumulation is described. The relationship between in vivo and in vitro anthocyanin production is discussed.  相似文献   

15.
The effects of different levels of Murashige and Skoog (MS) basal medium, 2,4-dichlorophenoxyacetic acid (2,4-D), and sucrose on anthocyanin production and biomass accumulation of cell suspension cultures of Cleome rosea were investigated. Cultures were established in liquid MS medium containing 30 g l−1 sucrose and supplemented with 0.90 μM 2,4-D. Proliferating cell suspension cultures achieved the highest growth capacity, a fourfold increase in biomass accumulation, following subculture at the exponential growth phase, 14–18 days of culture. Moreover, the presence of 2,4-D was essential for anthocyanin production and biomass accumulation. On the other hand, increasing levels of sucrose above 30 g l−1 resulted in a drastic reduction in biomass accumulation. Anthocyanin production was highest in cell suspension cultures grown on half-strength MS medium (1/2 MS), 30 g l−1 sucrose, and 0.45 μM 2,4-D. These cell suspension cultures were mainly composed of small aggregates of spherical cells with similar morphology observed in anthocyanin-producing and non-producing cultures. Moreover, microscopic analysis of anthocyanin-producing cultures showed the presence of mixtures of non-pigmented, low-pigmented, and high-pigmented cells.  相似文献   

16.
DIX  P. J. 《Annals of botany》1981,48(3):315-319
Three cell lines with improved resistance to growth inhibitionby chloramphenicol were selected from cell cultures of Nicotianasylvestris. Resistance was retained in callus cultures of twoout of three plants regenerated from one of the lines, but notin cultures of plants regenerated from the other two lines.Sexual progeny of the two resistant plants were either sensitiveor showed slow segregation for chloramphenicol resistance. Incallus from only two of the seedlings was inheritance of chloramphenicolresistance clearly demonstrated. Nicotiana sylvestris, cell culture, choramphenicol resistance  相似文献   

17.
Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g–1 dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g–1 DCW, in response to treatment with jasmonic acid, and comprising 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g–1 DCW which made up 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g–1 DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g–1 DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g–1 DCW, but there was no change in the anthocyanin composition.  相似文献   

18.
The influence of shaking rates (expressed as revolutions permin) on orbital shaking platforms (1 in (2.54 cm) diam. rotarymotion) on the growth of cell suspension cultures of Acer pseudoplatanusL. and Atropa belladonna cultivar lutea Döll are described.By following cell growth and respiration and the levels of oxygenand carbon dioxide in the media during the progress of incubationit is concluded that the reduction of growth at sub-optimalshaking rates is not due to oxygen deficiency or toxic accumulationof carbon dioxide. The growth of the Atropa cell suspensionin ‘closed systems’ has been studied by the developmentof modified culture vessels and evidence obtained that the reducedgrowth in the systems is due to the formation by the culturesof an unidentified volatile growth inhibitor and not to eitheroxygen depletion or toxic accumulation of either carbon dioxideor ethylene. It is suggested that the reduced growth in ‘opensystems’ cultures at sub-optimal shaking speeds is eitherdue to retention of this volatile inhibitor or to restrictionof nutrient uptake by the existence of a stationary liquid-phaseboundary to the cells.  相似文献   

19.
Anthocyanic vacuolar inclusions (AVIs) appear as dark red-to-purple spheres of various sizes in vacuoles of grapevine (Vitis vinifera L.) cell suspension culture due to their interaction with anthocyanins. AVIs were purified and the bound anthocyanins extracted and analysed by HPLC from two lines of V. vinifera isolated from the same callus accumulating anthocyanin in the dark, yet varying in their anthocyanin profiles and accumulation. An intermediate-pigmented line (FU-1) with a 1.3:1 ratio of acylated:non-acylated anthocyanins, a colour value of 0.84 units and cyanidin and peonidin as the dominant species was compared with a high-pigmented line (FU-2) with a 1.2:1 ratio of acylated:non-acylated anthocyanins, a colour value of 3.72 units and malvidin predominating. The profile of AVI-bound anthocyanins showed an increase in acylated anthocyanins in both lines of approx. 28–29%, with no apparent preference for anthocyanin species. This resulted in a ratio of acylated:non-acylated anthocyanins of 6.2:1 for FU-1 and 4.9:1 for FU-2. The reasons for the selectivity of the AVIs for acylated (specifically p-coumaroylated) species compared with the whole cell profile are discussed.  相似文献   

20.
Young, A. J., Collins, J. C. and Russell, G. 1987. Ecotypicvariation in the osmotic responses of Enteromorpha intestinalis(L.) Link.—J. exp. Bot. 38: 1309–1324. The physiological basis for salt tolerance has been studiedin the euryhaline marine alga Enteromorpha intestinalis. Adaptationto dilute and concentrated seawaters has been investigated inthree separate populations of this alga: marine, rock pool andestuarine. Internal K+, Na+ and Cl levels have been determined usingtracer efflux analyses. K+ has been shown to be the major osmoticsolute within this alga. Cellular levels of Cl and, inparticular, Na+ are low although levels in the cell wall arehigh. Levels of these ions varied considerably between the separateplants; K+ levels within marine plants of E. intestinalis aretwo to four times those found in the other populations. Thetertiary sulphonium compound ß-dimethylsulphonio-propionateis maintained at relatively high levels, although it remainsfairly insensitive to change in the external salinity. Changes in the tissue water content and cell volume are large,particularly within the estuarine plants. The thin cell wallsof these plants allow large changes in volume in the diluteconditions experienced in an estuary, while low turgor preventscell rupture. Thicker cell walls and small cells of the marineand rock pool plants assist in tolerating high and low externalosmotic potential—the estuarine plants respond poorlyto concentrated seawater. Key words: Enteromorpha, osmoregulation, ecotypes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号