首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytoplankton communities and the production of cyanobacterial toxins were investigated in two alkaline Kenyan crater lakes, Lake Sonachi and Lake Simbi. Lake Sonachi was mainly dominated by the cyanobacterium Arthrospira fusiformis, Lake Simbi by A. fusiformis and Anabaenopsis abijatae. The phytoplankton biomasses measured were high, reaching up to 3159 mg l−1 in L. Sonachi and up to 348 mg l−1 in L. Simbi. Using HPLC techniques, one structural variant of the hepatotoxin microcystin (microcystin-RR) was found in L. Sonachi and four variants (microcystin-LR, -RR, -LA and -YR) were identified in L. Simbi. The neurotoxin anatoxin-a was found in both lakes. To our knowledge this is the first evidence of cyanobacterial toxins in L. Sonachi and L. Simbi. Total microcystin concentrations varied from 1.6 to 12.0 μg microcystin-LR equivalents g−1 DW in L. Sonachi and from 19.7 to 39.0 μg microcystin-LR equivalents g−1 DW in L. Simbi. Anatoxin-a concentrations ranged from 0.5 to 2.0 μg g−1 DW in L. Sonachi and from 0 to 1.4 μg g−1 DW in L. Simbi. In a monocyanobacterial strain of A. fusiformis, isolated from L. Sonachi, microcystin-YR and anatoxin-a were produced. The concentrations found were 2.2 μg microcystin g−1 DW and 0.3 μg anatoxin-a g−1 DW. This is the first study showing A. fusiformis as producer of microcystins and anatoxin-a. Since A. fusiformis occurs in mass developments in both lakes, a health risk for wildlife can be expected.  相似文献   

2.
Untransformed and transformed root cultures of Swainsona galegifollawere established for swainsonine production. Transformed rootsgrew faster and produced higher swainsonine levels (62.3 µgg–1 DW) than untransformed roots (23.6 ,µg g–1DW) or roots of intact plants (8.7 µg g–1 DW). Transformationof a number of plant genotypes using A. rhizogenes strain LBA9402 showed that plant genotype Influences swainsonine levelin transformed roots but that a wide range of swainsonine levelscan be induced by separate transformation events in the samegenotype. Enhancement of swainsonine production was attemptedby treatment with sugars and induction of polyploid roots. Key words: Agrobacterium rhizogenes, root cultures, Swainsona galegifolia, swainsonine  相似文献   

3.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

4.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

5.
Phytoplankton photosynthetic characteristics in the Kenyan RiftValley lakes Bogoria, Nakuru and Elmentaita were studied betweenNovember 2003 and February 2005. In these world-famous saline–alkalinelake systems, long-term continuous monitoring and photoautotrophicprimary productivity modelling have been done for the firsttime. High light attenuation coefficients were observed withlakes means around 13 m–1 reflecting the huge phytoplanktonbiomass. No photoinhibition was observed in the primary productivityfield measurements. High values of the photosynthesis–irradiancecurve initial slope () up to 0.85 (mg O2 mg Chl a–1 h–1)(µmolphotons m–2 s–1)–1 and a low onset of productivitysaturation (Ek) down to 11.4 µmol photons m–2 s–1as an acclimation to poor light supply were found. For the trophogeniczone, high mean net primary production (NPP) rates of 6.8, 10.7and 8.5 g O2 m–2 day–1 were recorded for Bogoria,Nakuru and Elmentaita. For the whole water column, NPP decreasedto –1.4, 1.6 and 7.2 g O2 m–2 day–1 becauseof high community respiration. Modelling of the gross primaryproduction (GPP, Chlorophyll a, light supply, initial slope, maximum production rates considered) gave annual values of4.9, 6.8 and 4.2 kg O2 m–2 year–1, respectively,for Bogoria, Nakuru and Elmentaita, annual NPP values down tothe compensation depth were 70, 65 and 55% of the GPP.  相似文献   

6.
The seasonal development of bacteria was studied in the hypertrophiccoastal lagoon Ciénaga Grande de Santa Marta (Caribbeancoast of Colombia). This large but only 1.5 m deep lagoon issubject to strong seasonal variations of salinity from almostfully marine (April/May) to brackish conditions in October/November.Chlorophyll ranged from 6 to 182 µg L–1, and grossprimary production amounted to 1690 g C m–2 per year.Total bacterial number (TBN) ranged from 6.5 to 90.5 x 109 cellsL–1 and bacterial biomass (BBM) from 77 to 1542 µgC L–1, which are among the highest ever reported for naturalcoastal waters. Neither TBN nor BBM varied significantly withsalinity, phytoplankton or seston concentrations. Only the bacterialmean cell volume showed a significant relation to salinity,being highest (0.066 µm3) during the period of increasingand lowest (0.032 µm3) during decreasing salinity. Bacterialprotein accounted for 24% (19–26%) and phytoplankton proteinfor 57% (53–71%) of total seston protein. The ratio (annualmean) of bacterial carbon to phytoplankton carbon was 0.44 (range0.04–1.43). At low phytoplankton abundance [chlorophylla (Chl a) < 25 µg L–1], bacterial carbon wasalmost equal to phytoplankton biomass (i.e. the mean ratio was1.04). In contrast, at Chl a > 100 µg L–1, BBMwas low compared to phytoplankton biomass (the mean ratio was0.16). In general, BBM varied less than phytoplankton biomass.Most probably, the missing correlation between bacterial andphytoplankton variables was due to (i) organic material partlyderived from allochthonous sources serving as food resourcefor bacteria and (ii) a strong resuspension of bacteria fromthe sediment caused by frequent wind-induced mixing of the veryshallow lagoon.  相似文献   

7.
Carbon dynamics in the 'grazing food chain' of a subtropical lake   总被引:1,自引:0,他引:1  
Studies were conducted over a 13 month period at four pelagicsites in eutrophic Lake Okeechobee, Florida (USA), in orderto quantify carbon (C) uptake rates by size-fractionated phytoplankton,and subsequent transfers of C to zooplankton. This was accomplishedusing laboratory 14C tracer methods and natural plankton assemblages.The annual biomass of picoplankton (<2 µm), nanoplankton(2–20 µm) and microplankton (<20 µm averaged60, 389 and 100 µg C 1–1 respectively, while correspondingrates of C uptake averaged 7, 51 and 13 µg C1–1h–1. The biomass of microzooplankton (40–200 µm)and macrozooplankton (<200 µm averaged 18 and 60 µgC 1–1, respectively, while C uptake rates by these herbivoregroups averaged 2 and 3 µg C 1–1 h–1. Therewere no strong seasonal patterns in any of the plankton metrics.The ratio of zooplankton to phytoplankton C uptake averaged7% over the course of the study. This low value is typical ofthat observed in eutrophic temperate lakes with small zooplanktonand large inedible phytoplankton, and indicates ineffectiveC transfer in the grazing food chain. On a single occasion,there was a high density (<40 1–1) of Daphnia lumholrzii,a large-bodied exotic cladoceran. At that time, zooplanktoncommunity C uptake was <20 µg C 1–1 h–1and the ratio of zooplankton to phytoplankton C uptake was near30%. If D.lumholrzii proliferates in Lake Okeechobee and theother Florida lakes where it has recently been observed, itmay substantially alter planktonic C dynamics.  相似文献   

8.
We determined the productivity (µg C µg–1Chi a h–1) of size-fractionated phytoplankton in the northernNorth Pacific and the Bering Sea in summer and winter. Picoplankton(<2 µm) were more productive than larger sized phytoplankton(2–10 and 10–200 µm) in the subtropical region,where the in situ temperature was >10°C; whereas picoplanktonin the subarctic region were similar in productivity or lessproductive than larger sized plankton, where the in situ temperaturewas <10°C. The result from the subtropical region inthis study agrees with previous results from tropical and subtropical waters, which indicate that phytoplankton productivitytends to decrease with increasing cell size. The result fromthe subarctic region, however, differs from previous results.We observed a positive linear regression for in situ temperatureand picoplankton productivity, but this trend was not seen inthe larger sized phytoplankton. The results show that the productivityof picoplankton is markedly influenced by in situ temperaturecompared with that of larger sized plankton. Low tem peratureappears to account largely for the observation that the productivityof picoplankton is not significantly higher than that of largersized phytoplankton in the subarctic region.  相似文献   

9.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

10.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

11.
The response of phytoplankton to variations in the light regimewas studied during the VULCAN and ACDA cruises in the Antarctic.Unenriched batch cultures of 12–19 days' duration reachedchl concentrations of 10–50 µg–1 and exhibitedexponential growth rates, with the maximal rate being 0.41 doubl,day–1. Ice edge algae exhibited maximum growth rates atphoton flux densities (PFD) of 30–100 µE m–2S–1and the growth rate was reduced by about 30% at 500–1000µE m–2S–1 The chl/C ratio ranged between 0.004and 0.018, with the lowest ratios at PFDs above 500 µEm–2S–1 chl/C ratios were also below maximum at PFDsbelow 40–50 µE m–2S–1 The C:N:P ratioswere close to the Redfield ratios; the Si/C ratio averaged 0.16(atoms), and the ATP/C ratio averaged from 0.0024 to 0.0050in different culture senes. When thawed after having been frozenfor 10 days, shade-adapted cultures were in a much better conditionthan sun-adapted ones. P versus I data showed that the maximumassimilation number varied from 0.75 to 4.4 µg C (µgchl)–1h–1. It varied inversely with the chl/C ratio;therefore the maximum carbon turnover rate varied little betweensamples (0.024/0.035 h–1). Low biomass communities exhibitedrelatively high values for (the initial slope of P versus Icurves), low values for 1sat (160–330 µE m–2S–1),and they were susceptible to photoinhibition. In contrast, communitiesdominated by Odontella weissflogii exhibited low values for, a high value for Isat (560 µE m–2S–1 andthey tolerated high PFDs. The photo-adaptational status of thephytoplankton in natural water samples is discussed relativeto the profile of water column stability and mixing processes.  相似文献   

12.
Phytoplankton and zooplankton development in a lowland, temperate river   总被引:5,自引:0,他引:5  
The longitudinal and seasonal patterns of plankton developmentwere examined over 2 years in a lowland, temperate river: theRideau River (Ontario, Canada). Following an initial decreasein phytoplankton and zooplankton biomass as water flowed fromthe headwaters into the Rideau River proper, there was an increasein chlorophyll a (chl a) and zooplankton biomass with downstreamtravel. At approximately river km 60, both phytoplankton andzooplankton reached their maximum biomass of 27 µg l–1(chl a) and 470 µg l–1 (dry mass), respectively.Downstream of river km 60, the biomass of both planktonic communitiesdeclined significantly despite increasing nutrient concentrationsand favorable light conditions. These downstream declines maybe due to the feeding activity of the exotic zebra mussel (Dreissenapolymorpha) which was at high density in downstream reaches(>1000 individuals m–2). There was no evidence forlongitudinal phasing of phytoplankton and zooplankton, as increasesand decreases in chl a and zooplankton biomass appeared to coincide.Overall, chl a was best predicted by total phosphorus (R2=0.43),whereas zooplankton biomass was best predicted by chl a (R2=0.20).There was no evidence for significant grazing effects of zooplanktonon phytoplankton biomass.  相似文献   

13.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

14.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

15.
Plants of Helianthus annuus were pot-grown in soil, with approximately30% of the root system protruding through the base. After 7d, the upper part of the root system of half of the plants wasexposed to drought (internal roots) while the lower part waskept in aerated nutrient solution (protruding root). The treatmentrapidly reduced the internal roots' water content from 26.1to 21.9 g g–1 dry weight (DW), while in protruding rootsof stressed plants it slowly and continuously decreased from31.9 to 25.2 g g–1 DW. Leaf water content rapidly decreasedin treated plants from 7.4 to 6.4 g g–1 DW in the first2d and then reached a plateau. In stressed plants leaf stomatalresistance was significantly higher in the first 3 d while leafwater potential was lower only on the last day. Abscisic acid (ABA) concentration in treated plants increasedsignificantly compared to the controls. In treated internalroots, ABA rose from the first day, reaching a maximum of 1.48±0.49nmol g–1 DW after 3 d. In treated protruding roots a maximumof 0.99±0.09 nmol g–1 DW was reached after 1 d.ABA concentration in the xylem sap increased 2 d and 3 d afterthe start of soil drying, with a maximum of 113±12nmoll–1 during the third day. The ABA rise in the leaves oftreated plants was less significant. Indol-3yl-acetic acid (IAA) concentration in internal rootsof treated plants reached a maximum of 22.54±3.34 nmolg–1 DW on the third day, then decreased dramatically.The protruding root system of control plants showed a maximumvalue of 16.05±1.77 nmol g–1 DW on the sixth day. Little difference in cytokinin content of xylem sap was notedbetween control and treated plants. Hormonal variations in different parts of the plant are discussedin relation to drought stress. Key words: Soil drying, roots, ABA, IAA, cytokinins  相似文献   

16.
Stem from three- and four-week-old Soyabean [Glycine max (L.)Merr. cv. Tracy] plants reduced from 0.3 to 0.7 µmol nitrateh–l g–l f. wt. Leaf activity was 4.7–7.6 µmolnitrate h–l g–l f. wt. Outer stem was two to fourtimes more active at reducing nitrate than was inner stem. Plantnitrate nutrition had a strong effect upon the ratio of activitypresent in stem and leaf. More nitrate increased the proportionpresent in leaves. Glycine max L., soyabean, nitrate assimilation, nitrogen metabolism, Rhizobium japonicum  相似文献   

17.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

18.
Ephyra larvae and small medusae (1.7–95 mm diameter, 0.01–350mg ash-free dry wt, AFDW) of the scyphozoan jellyfish Aureliaaurita were used in predation experiments with phytoplankton(the flagellate Isochrysis galbana, 4 µm diameter, {smalltilde}6 x 10–6 µg AFDW cell–1), ciliates (theoligotrich Strombidium sulcatum, 28 µm diameter, {smalltilde}2 x 10–3 µg AFDW), rotifers (Synchaeta sp.,0.5 µg AFDW individual–1) and mixed zooplankton(mainly copepods and cladocerans, 2.1–3.1 µg AFDWindividual–1). Phytoplankton in natural concentrations(50–200 µg C I–1) were not utilized by largemedusae (44–95 mm diameter). Ciliates in concentrationsfrom 0.5 to 50 individuals ml"1 were consumed by ephyra larvaeand small medusae (3–14 mm diameter) at a maximum predationrate of 171 prey day–1, corresponding to a daily rationof 0.42%. The rotifer Synchaeta sp., offered in concentrationsof 100–600 prey I–1, resulted in daily rations ofephyra larvae (2–5 mm diameter) between 1 and 13%. Mixedzooplankton allowed the highest daily rations, usually in therange 5–40%. Large medusae (>45 mm diameter) consumedbetween 2000 and 3500 prey organisms day"1 in prey concentrationsexceeding 100 I–1. Predation rate and daily ration werepositively correlated with prey abundance. Seen over a broadsize spectrum, the daily ration decreased with increased medusasize. The daily rations observed in high abundance of mixedzooplankton suggest a potential ‘scope for growth’that exceeds the growth rate observed in field populations,and this, in turn, suggests that the natural populations areusually food limited. The predicted predation rate at averageprey concentrations that are characteristic of neritic environmentscannot explain the maximum growth rates observed in field populations.It is therefore suggested that exploitation of patches of preyin high abundance is an important component in the trophodynamicsof this species. 1Present address: University of Bergen, Department of MarineBiology, N-5065 Blomsterdalen, Norway  相似文献   

19.
HOLE  C. C.; BARNES  A. 《Annals of botany》1980,45(3):295-307
Carbon dioxide efflux from 5- to 20-day-old pea fruits was measuredfor plants grown in controlled environment at 15 °C and600 µmol s–1 m–2 photon flux density in a16 h photoperiod. The rate of CO2 output per fruit increasedquickly from 0.005 to 0.018 mg CO2 min–1 during fruitelongation and subsequently more slowly to 0.030 mg CO2 min–1as the fruits inflated. On a d. wt basis the rate was highest,0.175 mg CO2 g–1 min–1, in the youngest fruits anddeclined curvilinearly with increasing fruit weight to 0.02mg CO2 g–1 min–1. Separation of maintenance andgrowth components was achieved by starvation methods and bymultiple regression analysis. From the latter method estimatesof the maintenance coefficient declined hyperbolically from150±8.7 mg carbohydrate g–1 d. wt day–1 inthe very young fruits (0.05 g) to 10.4±0.36 mg carbohydrateg–1 d. wt day–1 in older fruits (2.0 g). On a nitrogenbasis maintenance costs decreased from 2240 to 310 mg carbohydrateg–1 nitrogen day–1 while nitrogen concentrationfell from 6.7 to 3 per cent d. wt. A simple linear relationshipbetween maintenance cost per unit d. wt and nitrogen concentrationwas not observed. A growth coefficient of 50±6.7 mg carbohydrate g–1growth (equivalent to a conversion efficiency, YG, of 0.95)was estimated for all fruits examined. The overall efficiency, Y, increased from a mean of 0.70 to0.85 during fruit elongation and subsequently declined to 0.80.For a given fruit weight, efficiency increased asymptoticallywith relative growth rate; both asymptote and slope of the relationshipincreased as the fruits grew. Pisum sativum L., garden pea, legume fruit, carbon dioxide efflux, maintenance respiration, growth respiration  相似文献   

20.
The goal of this research is to enhance our knowledge of thecontributions of doliolids to the planktonic community as consumersand secondary producers. The objectives are to quantify feedingand growth rates of Dolioletta gegenbauri gonozooids at fourfood concentrations and four temperatures in order to determinetheir impact as grazers throughout the water column. Althoughdoliolids are abundant in numerous regions of the coastal ocean,and are considered to be major planktonic grazers, data on ratesof feeding and growth are scarce. Laboratory experiments wereconducted at 16.5, 20, 23.5 and 26.5°C to quantify removalof a 50:50 volumetric concentration of Thalassiosira weissflogiiand Rhodomonas sp. at four different food concentrations of20, 60, 160 and 390 µg C l–1. Results from theseexperiments suggest that clearance rates are similar at concentrationsfrom 20 to 60 µg C l –1, and decrease as the foodconcentrations increase to 160 and 390 µg C l –1.The ingestion rates increase over a range of phytoplankton concentrationsfrom 20 to 160 µg C l –1, then decrease when abnormallyhigh concentrations of 390 µg C l –1 are offered.Clearance and ingestion rates increase as temperature increasesfrom 16.5 to 26.5°C. The exponential growth rates rangefrom k = 0.2–0.7, with the lowest rates occurring at thehighest food concentration. Growth rates increase with increasingtemperature from K = 0.1–0.3 at 16.5°C to 0.45–0.7at 26.5°C. In each case, the small- and medium-sized zooidshad higher growth rates than the larger gonozooids. These resultssuggest that doliolid feeding and growth rates are a functionof environmental food concentrations and temperatures, and implythat they can be important consumers in a changing neritic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号