首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
David D. Ku 《Life sciences》1982,30(3):277-284
The effects of chronic reserpine pretreatment (0.1 mg/kg/day, 7–9 days) on myocardial sodium pump activity, the binding of 3H-ouabain to Na+, K+-ATPase, and the positive inotropic effect of ouabain were studied in guinea pig hearts. Ouabain-sensitive 86Rb uptake, an estimate of sodium pump activity, was significantly decreased (33.0%) in papillary muscles of chronic reserpine-pretreated guinea pigs as compared to the saline-treated controls. Kinetic analyses of the interaction of 3H-ouabain with Na+, K+-ATPase indicated that chronic reserpine pretreatment resulted in a significant decrease (24.3%) in the maximum 3H-ouabain binding site concentration when the results were expressed as pmoles per mg protein. The maximum 3H-ouabain binding sites or the number of Na+, K+-ATPase units, however, were not significantly different between the two groups when they were expressed as pmoles per mg DNA. The affinity or the dissociation rate constant (Kd) of 3H-ouabain binding was not altered after chronic reserpine pretreatment. In isolated, electrically-driven left atrial preparations, the basal contractile force was slightly higher in the reserpine-pretreated animals; the subsequent development of the positive inotropic effect and the concentration of ouabain needed to produce half-maximal inotropic response, however, were not different from the controls. Thus, it is concluded that chronic reserpine pretreatment is accompanied by a significant reduction in myocardial sodium pump activity; however, the number of sodium pump sites per cell was unchanged. The sensitivity of the reserpine-pretreated myocardium to the inotropic action of ouabain as well as its affinity for 3H-ouabain binding in vitro are also unchanged.  相似文献   

2.
An early increase in lymphocyte plasma membrane K+ transport is essential for PHA stimulated lymphocytes to divide. Little is known about the specific source and amount of energy required to support the increased transport by activated lymphocytes. Since ouabain, a cardiac glycoside, specifically inhibits the transport ATPase, we have measured the decrement in glycolysis and tricarboxylic acid cycle activity when untreated and PHA treated lymphocytes were exposed to ouabain. This metabolic decrement represents the portion of metabolism associated with monovalent cation transport and closely related processes. Since TCA cycle activity accounted for only 0.2% of glucose consumption, aerobic glycolysis was the major source of energy, i.e., ATP, for increased transport. Approximately one-third of the total lactate production in both control and PHA stimulated lymphocytes was ouabain-sensitive. Ouabain sensitive lactate production in control, 105 μmol/1010 cells/hour, increased 1.8-fold to 193 μmol/1010 cells/hour after PHA treatment. Active K+ influx in similar cell populations increased from 40 μmol/1010 cells/hour to 74 μmol/1010 cells/hour (1.9-fold) after PHA treatment. The increment in ouabain-sensitive energy production and K+ transport were closely correlated and, therefore, 0.38 moles of K+ are transported for each mole of ATP generated in both control and PHA treated cells. The increased requirement for transport related energy is provided by increasing the ouabain-sensitive ATP production rather than altering the efficiency of ATP transduction.  相似文献   

3.
A method is described for the extraction of microsomal ouabain-sensitive (Na+ + K+)-activated ATPase from separated frog skin epithelium. The method yields a microsomal fraction containing (Na+ + K+)-stimulated activity in the range of 30–40 nmol · mg−1 · min−1 at 26 °C. This portion, which is also ouabain sensitive, is about half of the total activity in media containing Mg2+, Na+ and K+. These preparations also contain Mg2+-dependent or Ca2+-dependent activities which are not additive and which are not significantly affected by ouabain, Na+, K+ or Li+.The activations of the ouabain-sensitive ATPase activity by Mg2+, Na+, and K+ are similar to those described in other tissues. It is found that Li+ does not substitute for Na+ as an activator but in high concentrations does produce partial activation in the presence of Na+ with no K+. These results are pertinent to the reported observations of ouabain-sensitive Li+ flux across frog skin. It is concluded that this flux is not apparently due to a direct activating effect of Li+ on the sodium pump.  相似文献   

4.
Summary Na+, K+ exchanges were studied in isolated hepatocytes of the rainbow trout, Salmo gairdneri. Ouabain at 10–4 M produced maximal inhibition (95%) of K+ uptake and enhanced intracellular Na+ accumulation, showing that active fluxes account for a very large proportion of Na+ and K+ exchanges. Inhibition of the Na–K pump by ouabain was significant at low concentrations (10–8 M). When external K+ concentration was reduced from 7 mM to 0.5 mM, half maximum inhibition (IC50) of K+ uptake was obtained at a 22-fold lower concentration of ouabain confirming that ouabain and potassium compete at the same pump site. Time-course analysis of [3H]ouabain binding indicated a two-component kinetics: one component saturable and dependent on K+ concentration in the medium, the other linear and independent of external K+. The ouabain binding site number, determined by Scatchard plots, remained constant (ca. 2.5·105 per cell) and independent of the external K+ concentration (7, 0.5 or 0 mM), while the dissociation constant (KD) decreased from 4.2 M to 7.3 nM when K+ was removed from the Hank's medium. These ouabain binding sites are characterized by an exceptionally low turnover rate (400 min–1), as estimated from ouabain-sensitive K+ flux, in comparison to those described in other cell types of higher vertebrates. At each external K+ concentration studied, the inhibition of K+ uptake and ouabain binding measured as a function of ouabain concentration indicated a strict correlation between the degree of K pump inhibition and the amount of bound glycoside.  相似文献   

5.
Harmaline inhibits K+ influx into primary cell cultures of ground squirrel kidneys to a greater extent than either ouabain or furosemide. A concentration of 200 μM harmaline was required to inhibit half of the total K+ influx; this effect was also seen at low temperature (5°C), and in another species (hamster). Although kinetic analysis of K+ influx indicates that harmaline does not compete with extracellular K+, harmaline did reduce the binding of [3H]ouabain to the cells. K+ efflux was also reduced. Therefore, harmaline may inhibit the furosemide-sensitive Na+/K+ cotransport system as well as the ouabain-sensitive Na+/K+ pump.  相似文献   

6.
7.
The activity of the β-cell Na+/K+ pump was studied by using ouabain-sensitive (lmM ouabain) 86Rb+ influx in β-cell-rich islets of Umeå-ob/ob mice as an indicator of the pump function. The present results show that the stimulatory effect of glucose on ouabain-sensitive 86Rb+ influx reached its approximate maximum at 5mM glucose. Pre-treatment of the islets with 20mM glucose for 60 min strongly reduced the glucose-induced stimulation of the Na+/K+ pump. Pre-treatment (60 or 180 min) of islets at 0mM glucose, on the other hand, did not affect the magnitude of the glucose-induced stimulation of 86Rb+ influx dunng the subsequent 5-min incubation. Glibenclamide stimulated the ouabain-sensitive 86Rb+ uptake in the same manner as glucose. The stimulatory effect, showed its apparent maximum at 0.5μM. Pre-treatment (60 min) of islets with 1μM glibenclamide did not reduce the subsequent stimulation of the ouabain-sensitive 86Rb+ influx. The stimulatory effect of glibenclamide and D-glucose were not .additive, suggesting that they may have the same mechanism of action. No direct effect of glibenclamide (0.01-1μM) was observed on the Na+/K+ ATPase activity in homogenates of islets. Diazoxide (0.4mM) inhibited the Na+/K+ pump. This effect was sustained even after 60 min of pre-treatment of islets with 0.4mM diazoxide. The stimulatory effect of glibenclamide and D-glucose were abolished by diazoxide. It is concluded that nutrient as well as non-nutrient insulin secretagogues activate the Na+/K+ pump, probably as part of the membrane repolarisation process.  相似文献   

8.
Summary Simultaneous measurements of transepithelial potential difference (PD) and net water flux were made in the stripped intestine of seawater eels, and the effects of ouabain on these two parameters were examined in normal Ringer solution or under a chloride concentration gradient. Ouabain reduced the serosa-negative PD and the net water flux in normal Ringer solution with a linear relationship between the PD and the net water flux. Removal of K+ from the Ringer solution on both serosal and mucosal sides also reduced the PD and the net water flux to approximately zero. On the other hand, blocking the Na+–K+ pump by ouabain, K+-free or Na+-free Ringer solution increased the diffusion potential for Cl. Inhibition of Cl transport and increment in Cl permeability by ouabain occurred almost simultaneously. It is likely, therefore, that Cl transport as well as Cl permeability is dependent on Na+–K+ pump activity. A possible mechanism of dependence of Cl transport on the Na+–K+ pump is discussed in relation to the increment in Cl permeability.  相似文献   

9.
《Life sciences》1993,52(24):PL273-PL278
3H-ouabain binding and ouabain-inhibitable 86Rb+ (K+) uptake were investigated as a means to identify a third isoform of Na+, K+-ATPase in crude synaptosome preparations. The specific binding of low concentrations (10 nM and 1 uM) of 3H-ouabain, in crude synaptosome preparations, was markedly inhibited by K+ (0.5–5 mM). Accordingly, 86Rb+ (K+) uptake, in the presence of 5 mM K+ was not sensitive to inhibition by low concentrations (10−11–10−7 M) of ouabain. Higher concentrations (10−6–10−2.6 M) of ouabain resulted in a biphasic inhibition of K+ uptake, which distinguished the activities of the presumed alpha 2 and alpha 1 isozymes of Na+, K+-ATPase. Reduction of K+ (1.25 mM and 0.5 mM) in the incubation, resulted in the observation of a third component of ouabain- sensitive K+ uptake. This Na+, K+-ATPase activity, which was defined, pharmacologically, as very sensitive (VS) to ouabain, exhibited IC50s of 3.6 nM and 92 nM at 1.25 mM K+ and 0.5 mM K+, respectively. Inhibition of ouabain binding and VS-dependent K+ uptake, at a high, physiological cocentration (5 mM) of K+, suggests that VS may be an inactive isoform of brain Na+, K+-ATPase under resting conditions.  相似文献   

10.
Summary The sulfatide content, phospholipid concentration, and (Na++K+)-ATPase activity from skin and gills of different stages of larval development ofCalyptocephalella caudiverbera (a Chilean frog) were analyzed. Additionally, the short-circuit current in skin was studied. When skin and gills, depending on the stage of larval development, present (Na++K+)-ATPase activity, they have a high ratio of sulfatide to amount of membrane and the phosphatidylserine concentration remains unchanged. Sulfatide content and (Na++K+)-ATPase activity in skin are in direct relationship with the level of sodium flux present during development. The specific enzymatic hydrolysis of sulfatide with partially purified arylsulfatase of pig kidney inhibits 100% of the ouabain-sensitive (Na++K+)-ATPase. The ouabain-insensitive ATPase remains virtually unchanged with the treatment, even with a high concentration of arylsulfatase or with ouabain present in the medium. These experiments strongly suggest a role of sulfatides in the (Na++K+)-ATPase activity and, as a consequence, in sodium ion transport.  相似文献   

11.
Distal colon absorbs K+ through a Na+-independent, ouabain-sensitive H+/K+-exchange, associated to an apical ouabain-sensitive H+/K+-ATPase. Expression of HKα2, gene associated with this ATPase, induces K+-transport mechanisms, whose ouabain susceptibility is inconsistent. Both ouabain-sensitive and ouabain-insensitive K+-ATPase activities have been described in colonocytes. However, native H+/K+-ATPases have not been identified as unique biochemical entities. Herein, a procedure to purify ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon is described. H+/K+-ATPase is Mg2+-dependent and activated by K+, Cs+ and NH4+ but not by Na+ or Li+, independently of K+-accompanying anion. H+/K+-ATPase was inhibited by ouabain and vanadate but insensitive to SCH-28080 and bafilomycin-A. Enzyme was phosphorylated from [32P]-γ-ATP, forming an acyl-phosphate bond, in an Mg2+-dependent, vanadate-sensitive process. K+ inhibited phosphorylation, effect blocked by ouabain. H+/K+-ATPase is an α/β-heterodimer, whose subunits, identified by Tandem-mass spectrometry, seems to correspond to HKα2 and Na+/K+-ATPase β1-subunit, respectively. Thus, colonic ouabain-sensitive H+/K+-ATPase is a distinctive P-type ATPase.  相似文献   

12.
A. A. Rubashkin 《Biophysics》2013,58(5):660-663
A theory of change of the ionic fluxes in the lymphoid cells in their transition from normal to apoptosis we have developed previously is applied to the analysis of Na+/Na+ exchange fluxes in human lymphoid cells U937 exposed to ouabain. We solve a system of equations describing changes in the intracellular concentrations of Na+, K+ and Cl?, membrane potential and cell volume. It is shown that the Na+ influx (I Na/Na) and output flux through the Na+/Na+ tract increased 4 times in 8 h after disconnecting Na+/K+-ATPase for normal cell U937. These fluxes increased 2.6 times for apoptotic cells. The value of I Na/Na after 8 h off pump by ouabain is 97% of the total Na+ input for both cell types. It is concluded that ouabain not only inhibits the Na+/K+-ATPase, but also increases Na+ exchange fluxes through the Na+/Na+ tract, thereby switching sodium transport across the membrane of lymphoid cells to Na+/Na+ equivalent exchange.  相似文献   

13.
Slicing and incubating rat liver caused a rapid Ca2+-independent exchange of K+ for Na+, followed by a Ca2+-dependent recovery. Freshly cut slices washed for 10 min in a Ca2+ medium containing equal concentrations of Na+ and K+ showed little replacement of K+ by Na+ during subsequent incubation in a normal medium. Changes in medium Ca2+ caused immediate changes in slice Na+ and K+, before any substantial change in slice Ca2+ and without altering gradients responsible for passive transfers of Na+ and K+. Ca2+ did not influence an ouabain-sensitive Na+ pump. It also appeared unlikely that Ca2+ was required for an ouabain-insensitive Na+ pump or for maintenance of intracellular structures concerned with K+ sorption, even if these mechanisms existed in the slices. Instead Ca2+ seemed to maintain the cell membrane relatively impermeable to Na+ and K+. An ouabain-sensitive Na+ pump not normally dependent on oxygen supply to the cells appeared to alter its activity according to the work required of it. Control of slice water content could not be attributed to the activity of this pump.  相似文献   

14.
Summary Effect of amiloride, ouabain, and Ba++ on the nonsteady-state Na–K pump flux and short-circuit current in isolated frog skin epithelia.The active Na+ transport across isolated frog skin occurs in two steps: passive diffusion across the apical membrane of the cells followed by an active extrusion from the cells via the Na+–K+ pump at the basolateral membrane. In isolated epithelia with a very small Na+ efflux, the appearing Na+-flux in the basolateral solution is equal to the rate of the pump, whereas the short-circuit current (SCC) is equal to the active transepithelial Na+ transport. It was found that blocking the passive diffusion of Na+ across the apical membrane (addition of amiloride) resulted in an instantaneous inhibition of the SCC (the transepithelial Na+ transport, whereas the appearing flux (the rate of the Na+–K+ pump) decreased with a halftime of 1.9 min. Addition of the Na+–K+ pump inhibitor ouabain (0.1mm) resulted in a faster and bigger inhibition of the appearing flux than of the SCC. Thus, by simultaneous measurement of the SCC and the appearing Na+ flux one can elucidate whether an inhibitor exerts its effect by inhibiting the pump or by decreasing the passive permeability. Addition of the K+ channel inhibitor Ba++, in a concentration which gave maximum inhibition of the SCC, had no effect on the appearing flux (the rate of the Na–K pump) in the first 2 min, although the inhibition of the SCC was already at its maximum.It is argued that in the short period, where the Ba++-induced inhibition of SCC is at its maximum and the appearing flux in unchanged, the decrease in the SCC (SCC) is equal to the net K+ flux via the Na+–K+ pump, and the coupling ratio () of the Na+–K+ pump can be calculated from the following equation =SCC t=0/SCC where SCC t=0 is the steady-state SCC before the addition of Ba++.  相似文献   

15.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

16.
To determine the effect of D-glucose on the β-cell Na+/K+ pump, 86Rb+ influx was studied in isolated, -cell-rich islets of Umeå-ob/ob mice in the absence or presence of lmM ouabain. D-glucose (20 mM) stimulated the ouabain-sensitive portion of 86Rb+ influx by 65%, whereas the ouabain-resistant portion was inhibited by 48%. The Na+/K+ ATPase activity in homogenates of islets of Umeå-ob/ob mice or normal mice was determined to search for direct effects of D-glucose. Thus, ouabain-sensitive ATP hydrolysis in islet homogenates was measured in the presence of different D-glucose concentrations. No effect of D-glucose (3–20 mM) was observed in either ob/ob or normal islets at the optimal Na+/K+ ratio for the enzyme (135 mM Na+ and 20 mM K+). Neither D-glucose (3–20 mM) nor L-glucose or 3-O-methyl-D-glucose (20 mM) affected the enzyme activity at a high Na+/K+ ratio (175 mM Na+ and 0.7mM K+). Diphenylhydantoin (150 μM) decreased the enzyme activity at optimal Na+/K+ ratio, whereas 50 μM of the drug had no effect. The results suggest that D-glucose induces a net stimulation the Na+/K+ pump of β-cells in intact islets and that D-glucose does not exert any direct effect on the Na+/K+ ATPase activity.  相似文献   

17.
—The ouabain-sensitive K+ uptake and ATPase activities of cultured glioma and neuroblastoma cells were studied. Both cell lines showed ouabain-sensitive K+ uptake which correlated with the level of [Na++ K+]ATPase activity found in the respective total cell homogenate. The glioma cells had a 2.1-fold higher rate of K+ uptake than neuroblastoma cells, and a 2.4-fold higher [Na++ K+]ATPase activity. In the presence of ouabain neuroblastoma cells released K+ and took up Na+ in a 1:1 ratio. These results are compared and contrasted with similar studies on brain tissue and isolated cells. It is suggested that the cultured cell lines may serve as good models for the cation transport properties of their tissue counterparts.  相似文献   

18.
Summary The apical membrane of rabbit urinary bladder can be functionally removed by application of nystatin at high concentration if the mucosal surface of the tissue is bathed in a saline which mimics intracellular ion concentrations. Under these conditions, the tissue is as far as the movement of univalent ions no more than a sheet of basolateral membrane with some tight junctional membrane in parallel. In this manner the Na+ concentration at the inner surface of the basolateral membrane can be varied by altering the concentration in the mucosal bulk solution. When this was done both mucosal-to-serosal22Na flux and net change in basolateral current were measured. The flux and the current could be further divided into the components of each that were either blocked by ouabain or insensitive to ouabain. Ouabain-insensitive mucosal-to-serosal Na+ flux was a linear function of mucosal Na+ concentration. Ouabain-sensitive Na+ flux and ouabain-sensitive, Na+-induced current both display a saturating relationship which cannot be accounted for by the presence of unstirred layers. If the interaction of Na+ with the basolateral transport process is assumed to involve the interaction of some number of Na+ ions,n, with a maximal flux,M max, then the data can be fit by assuming 3.2 equivalent sites for interaction and a value forM max of 287.8pm cm–2 sec–1 with an intracellular Na concentration of 2.0mm Na+ at half-maximal saturation. By comparing these values with the ouabain-sensitive, Na+-induced current, we calculate a Na+ to K+ coupling ratio of 1.40±0.07 for the transport process.  相似文献   

19.
J. Duhm  B.F. Becker  P.K. Lauf 《Life sciences》1980,26(15):1217-1222
The activity of the ouabain-insensitive Na+/Na+ exchange system was assessed by measurements of Li+ net-uptake in LK and HK sheep erythrocytes in the absence and presence of the L-antibody and various inhibitors. N-ethylmaleimide, p-chloromercuribenzoic sulfonate and phloretin inhibited the exchange by about 50%. Anti-L, while stimulating the K+ pump flux in LK cells, did not alter Na+/Li+ countertransport. The activity of the exchange system with fully saturated internal and external loading sites was estimated to be identical in LK and HK sheep red cells. Hence the Na+/Na+ exchange system seems to be molecularly unrelated to the ouabain-sensitive Na+K+ pump in these cells and not under genetic control of the HK/LK and M/L genes.  相似文献   

20.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号