首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 148 毫秒
1.
二脂酰甘油酰基转移酶(diacylglycerol acyltransferase,DGAT2)是植物储存油脂生物合成过程中的关键酶,对种子储存油脂累积具有重要的生理作用。本文采用电子克隆与实验相结合的方法,从烟草种子cDNA中克隆到DGAT2基因的开放阅读框序列,命名为NtDGAT2(GenBank登录号JX843807),其序列长999bp,编码332个氨基酸。多序列比对和进化分析表明该基因编码蛋白与其他植物DGAT2具有较高相似性和典型的DGAT2结构域。利用Real-time PCR定量表达分析显示Nt-DGAT2在烟草种子、花、茎、叶和根里面都有表达,且在发育中的种子和花的发育过程大量表达。酵母互补实验证实该基因编码蛋白具有DGAT酶活性。  相似文献   

2.
以油棕(Elaeis guineensis Jacq.)叶片基因组DNA为模板,克隆获得长度为1035 bp的二酰甘油酰基转移酶基因(DGAT2)的启动子区序列。序列分析结果表明,DGAT2基因启动子含有大量光反应元件、激素响应元件及部分转录因子结合位点。本研究同时构建了DGAT2基因启动子和GUS基因植物融合表达载体,通过蘸花法侵染拟南芥(Arabidopsis thaliana L.),并对转基因拟南芥中GUS基因表达的特异性进行了分析。结果显示,GUS基因在拟南芥各组织中均有表达,但没有明显的组织特异性;荧光定量PCR分析结果表明DGAT2在油棕不同器官中的转录水平存在明显差异。  相似文献   

3.
植物二酰甘油酰基转移酶基因(DGAT)研究进展   总被引:2,自引:0,他引:2  
三酰甘油(TAG)是油料作物最主要的储藏脂类,二酰甘油酰基转移酶(DGAT,EC2.3.1.20)是TAG合成途径的限速酶,其主要作用是催化二酰甘油加上酰基脂肪酸形成三酰甘油.在植物中已发现了3种不同类型的DGAT基因,分别为DGAT1、DGAT2和DGAT3.该文对近年来国内外有关植物DGAT相关基因及其蛋白分类、定位、结构及其在脂肪酸合成、种子发育与萌发、幼苗发育、叶片新陈代谢等过程中的作用等研究进展进行综述.为提高油料作物种子油含量以及特定脂肪酸积累提供理论参考.  相似文献   

4.
为研究雨生红球藻(Haematococcus pluvialis)的甘油二酯酰基转移酶(Diacylglycerol acyltransferase, DGAT)是否具有催化虾青素酰基化的功能, 首先通过雨生红球藻的cDNA库克隆得到了一个II型DGAT编码区全长序列(DGTT2)。在甘油三酯(Triacylglycerol, TAG)合成缺陷型酵母Saccharomyces cerevisiae H1246中过表达DGTT2基因发现HpDGTT2不能回补H1246的表型, 即不具有典型的DGAT功能。利用分离得到的雨生红球藻的内质网成功地建立了一个体外的虾青素酰基转移酶酶活测定体系, 添加含有重组HpDGTT2的酵母细胞的微粒体后虾青素酯的含量显著高于对照, 初步表明HpDGTT2具有催化雨生红球藻中虾青素酰基化功能。以上结果为进一步探索雨生红球藻中DGTT2的功能及深入理解虾青素合成在代谢水平的调控奠定了基础。  相似文献   

5.
该研究从甘蓝型油菜中克隆获得了二酰甘油酰基转移酶基因(DGAT),命名为BnDGAT1,并对该基因编码的氨基酸序列、蛋白结构域和系统进化树进行分析。结果表明:该基因编码的氨基酸序列包含二酰甘油酰基转移酶等多个功能结构域,并具有8个疏水跨膜结构区。系统进化分析表明,BnDGAT1与芥菜、拟南芥、旱金莲中DGAT1系统进化关系相对较近。利用定量PCR对BnDGAT1基因的RNA转录表达分析表明,在不同组织和角果的不同发育阶段,BnDGAT1基因的表达具有组织特异性,且在角果不同发育阶段,其RNA转录水平随着角果发育的成熟表达明显下调。  相似文献   

6.
蒺藜苜蓿DGAT1基因的克隆和功能鉴定   总被引:1,自引:0,他引:1  
该研究采用RT-PCR与电子克隆的方法,从蒺藜苜蓿cDNA中克隆得到2个编码二脂酰甘油酰基转移酶(diacylglycerol acyltransferase,DGAT)的基因MtDGAT1-1和MtDGAT1-2。MtDGAT1-1长1 620bp,编码539个氨基酸;MtDGAT1-2长1 524bp,编码507个氨基酸。多序列比对显示,MtDGAT1-1和MtDGAT1-2编码蛋白具有典型的植物DGAT1结构域。表达分析显示,MtDGAT1-1和MtDGAT1-2在根、茎、叶、花、种子中都有表达,在种子发育中高表达,且MtDGAT1-1于种子发育的中前期高表达,而MtDGAT1-2于种子发育的中后期高表达。酵母互补实验证实,MtDGAT1-2编码蛋白具有DGAT酶活性,能够恢复H1246的TAG合成和油体形成;而MtDGAT1-1编码蛋白不能恢复H1246的TAG合成和油体形成。  相似文献   

7.
二脂酰甘油酰基转移酶2 (DGAT2)基因研究进展   总被引:2,自引:0,他引:2  
袁峥嵘  柳小春  马海明  丁朝阳 《遗传》2008,30(3):289-294
二脂酰甘油酰基转移酶2 (Acyl CoA: Diacylgycerol Acyltransferase 2, DGAT2)是生物体内的一种非常重要的酶, 其主要机制是使二酰甘油加上脂肪酸酰基辅酶A以共价健结合形成三酰甘油。编码该酶的基因有DGAT2和DGAT1。文章综述了DGAT2基因的发现、定位、结构、生物学效应及其遗传多态性与生产性能的关系, 并对其应用前景进行了展望。  相似文献   

8.
DGAT相关基因研究进展   总被引:8,自引:0,他引:8  
马海明  施启顺  柳小春 《遗传学报》2005,32(12):1327-1332
DGAT是一种甘油酰基转移酶(Diacylgycerol Acyltransferase,DGAT),该酶与脂肪代谢、脂类在组织中的沉积有很大关系,它的主要作用机制是使二酰甘油加上脂肪酸酰基形成三酰甘油。编码该酶的基因有DGAT1和GAAT2,前者属于ACAT基因家族,后者属于MGAT1基因家族。本文综述了动物DGAT相关基因定位、结构、生物学效应及其多态性与生产性能的关系。  相似文献   

9.
采用RT-PCR和RACE技术从油葵(Helianthus annuus L.)种子中克隆了DGAT基因的cDNA全长序列,命名为HaDl(GenBank登录号为HM 015632).将HaDl与CaMV 35S组成型启动子融合,构建植物表达载体pBI-HaDl,通过根癌农杆菌介导转化烟草.对转基因植株进行GUS及PCR检测,同时采用气相色谱-质谱法(GC-MS)分析转基因烟草叶片中脂肪酸各成分的含量.结果表明:HaDl基因cDNA全长1 936 bp,最大开放阅读框为1 524 bp,编码507个氨基酸;推测的氨基酸序列与其它植物已报道的DGAT1基因的氨基酸序列一致性为70%~80%,具有DGAT1蛋白保守的二酰甘油结合基序"HKWIVRHLYFP",因此HaDl基因属于DGAT1基因家族.GUS活性染色及PCR检测均证明外源HaDl整合到烟草基因组并成功表达.转基因烟草叶片脂肪酸含量测定发现,油酸、软脂酸和硬脂酸的含量得到提高,推测HaDl是植物油脂合成相关的重要基因.  相似文献   

10.
[目的]克隆决明丙二酰Co A:ACP转酰基酶(MCAT)基因并做序列分析。[方法]采用RACE法从c DNA中扩增出决明丙二酰Co A:ACP转酰基酶(MCAT)的CDS全长序列,推测出MCAT基因编码的氨基酸序列并进行序列分析。[结果]分析结果显示MCAT的CDS全长1 253bp,编码405个氨基酸。通过序列比对分析发现决明MCAT蛋白包含一个酰基转移酶超家族结构域,并且发现了一段高度保守的七肽模序。[结论]获得了决明MCAT的CDS全长,其编码的蛋白可能催化丙二酰Co A的转酰基反应,为决明脂肪酸的合成通路的阐明以及后期的决明脂肪酸的基因工程研究打下了坚实的基础。  相似文献   

11.
Acyl CoA:diacylglycerol acyltransferase (DGAT) is an integral membrane protein of the endoplasmic reticulum that catalyzes the synthesis of triacylglycerols. Two DGAT enzymes have been identified (DGAT1 and DGAT2) with unique roles in lipid metabolism. DGAT1 is a multifunctional acyltransferase capable of synthesizing diacylglycerol, retinyl, and wax esters in addition to triacylglycerol. Here, we report the membrane topology for murine DGAT1 using protease protections assays and indirect immunofluorescence in conjunction with selective permeabilization of cellular membranes. Topology models based on prediction algorithms suggested that DGAT1 had eight transmembrane domains. In contrast, our data indicate that DGAT1 has three transmembrane domains with the N terminus oriented toward the cytosol. The C-terminal region of DGAT1, which accounts for ∼50% of the protein, is present in the endoplasmic reticulum lumen and contains a highly conserved histidine residue (His-426) that may be part of the active site. Mutagenesis of His-426 to alanine impaired the ability of DGAT1 to synthesize triacylglycerols as well as retinyl and wax esters in an in vitro acyltransferase assay. Finally, we show that the N-terminal domain of DGAT1 is not required for the catalytic activity of DGAT1 but, instead, may be involved in regulating enzyme activity and dimer/tetramer formation.  相似文献   

12.
Triacylglycerols are the predominant molecules of energy storage in eukaryotes. However, excessive accumulation of triacylglycerols in adipose tissue leads to obesity and, in nonadipose tissues, is associated with tissue dysfunction. Hence, it is of great importance to have a better understanding of the molecular mechanisms of triacylglycerol synthesis. The final step in triacylglycerol synthesis is catalyzed by the acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Although recent studies have shed light on metabolic functions of these enzymes, little is known about the molecular aspects of their structures or functions. Here we report the topology for murine DGAT2 and the identification of key amino acids that likely contribute to enzymatic function. Our data indicate that DGAT2 is an integral membrane protein with both the N and C termini oriented toward the cytosol. A long hydrophobic region spanning amino acids 66-115 likely comprises two transmembrane domains or, alternatively, a single domain that is embedded in the membrane bilayer. The bulk of the protein lies distal to the transmembrane domains. This region shares the highest degree of homology with other enzymes of the DGAT2 family and contains a sequence HPHG that is conserved in all family members. Mutagenesis of this sequence in DGAT2 demonstrated that it is required for full enzymatic function. Additionally, a neutral lipid-binding domain that is located in the putative first transmembrane domain was also required for full enzymatic function. Our findings provide the first insights into the topography and molecular aspects of DGAT2 and related enzymes.  相似文献   

13.
The final step of triacylglycerol biosynthesis is catalyzed by acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes. The two known DGATs, DGAT1 and DGAT2, are encoded by unrelated genes. Although both DGAT1 and DGAT2 knockout mice have reduced tissue triacylglycerol contents, they have disparate phenotypes, prompting us to investigate whether the two enzymes have unrecognized functional differences. We now report that DGAT1 exhibits additional acyltransferase activities in vitro, including those of acyl CoA:monoacylglycerol acyltransferase (MGAT), wax monoester and wax diester synthases, and acyl CoA:retinol acyltransferase (ARAT), which catalyze the synthesis of diacylglycerols, wax esters, and retinyl esters, respectively. These activities were demonstrated in in vitro assays with membranes from insect cells or homogenates from COS7 cells overexpressing DGAT1. Wax synthase and ARAT activities were also demonstrated in intact COS7 cells expressing DGAT1. Additionally, cells and tissues from DGAT1-deficient mice exhibited reduced ARAT activity, and the mice had increased levels of unesterified retinol in their livers on a high-retinol diet. Our findings indicate that DGAT1 can utilize a variety of acyl acceptors as substrates in vitro and suggest that these activities may be relevant to the in vivo functions of DGAT1.  相似文献   

14.
Acyl-CoA:diacylglycerol acyltransferase (EC 2.3.1.20) is a membrane protein present mainly in the endoplasmic reticulum. It catalyzes the final and committed step in the biosynthesis of triacylglycerol, which is the principal repository of fatty acids for energy utilization and membrane formation. Two distinct family members of acyl-CoA:diacylglycerol acyltransferase, known as DGAT1 and DGAT2, have been characterized in different organisms, including mammals, fungi, and plants. In this study, we characterized the functional role and topological orientation of signature motifs in yeast (Saccharomyces cerevisiae) DGAT2 using mutagenesis in conjunction with chemical modification. Our data provide evidence that both the N and C termini are oriented toward the cytosol and have different catalytic roles. A highly conserved motif, (129)YFP(131), and a hydrophilic segment exclusive to yeast DGAT2 reside in a long endoplasmic reticulum luminal loop following the first transmembrane domain and play an essential role in enzyme catalysis. In addition, the strongly conserved His(195) within the motif HPHG, which may play a role in the active site of DGAT2, is likely embedded in the membrane. These results indicate some similarities to the topology model of murine DGAT2 but also reveal striking differences suggesting that the topological organization of DGAT2 is not ubiquitously conserved.  相似文献   

15.
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by two distinct acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2. Both DGAT enzymes reside in the endoplasmic reticulum (ER), but DGAT2 also co-localizes with mitochondria and lipid droplets. In this report, we demonstrate that murine DGAT2 is part of a multimeric complex consisting of several DGAT2 subunits. We also identified the region of DGAT2 responsible for its localization to the ER. A DGAT2 mutant lacking both its transmembrane domains, although still associated with membranes, was absent from the ER and instead localized to mitochondria. Unexpectedly, this mutant was still active and capable of interacting with lipid droplets to promote TG storage. Additional experiments indicated that the ER targeting signal was present in the first transmembrane domain (TMD1) of DGAT2. When fused to a fluorescent reporter, TMD1, but not TMD2, was sufficient to target mCherry to the ER. Finally, the interaction of DGAT2 with lipid droplets was dependent on the C terminus of DGAT2. DGAT2 mutants, in which regions of the C terminus were either truncated or specific regions were deleted, failed to co-localize with lipid droplets when cells were oleate loaded to stimulate TG synthesis. Our findings demonstrate that DGAT2 is capable of catalyzing TG synthesis and promote its storage in cytosolic lipid droplets independent of its localization in the ER.  相似文献   

16.
The enzymes of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) family are responsible for the in vivo synthesis of neutral lipids. They are potential drug targets for the intervention of atherosclerosis, hyperlipidemia, obesity, type II diabetes and even Alzheimer’s disease. ACAT family enzymes are integral endoplasmic reticulum (ER) membrane proteins and can be divided into ACAT branch and acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) branch according to their substrate specificity. The ACAT branch catalyzes synthesis of cholesteryl esters using long-chain fatty acyl-coenzyme A and cholesterol as substrates, while the DGAT1 branch catalyzes synthesis of triacylglycerols using fatty acylcoenzyme A and diacylglycerol as substrates. In this review, we mainly focus on the recent progress in the structural research of ACAT family enzymes, including their disulfide linkage, membrane topology, subunit interaction and catalysis mechanism.  相似文献   

17.
Acyl CoA:diacylgycerol acyltransferase (EC; DGAT) catalyzes the final step in the production of triacylglycerol. Two polypeptides, which co-purified with DGAT activity, were isolated from the lipid bodies of the oleaginous fungus Mortierella ramanniana with a procedure consisting of dye affinity, hydroxyapatite affinity, and heparin chromatography. The two enzymes had molecular masses of 36 and 36.5 kDa, as estimated by gel electrophoresis, and showed a broad activity maximum between pH 6 and 8. Based on partial peptide sequence information, polymerase chain reaction techniques were used to obtain full-length cDNA sequences encoding the purified proteins. Expression of the cDNAs in insect cells conferred high levels of DGAT activity on the membranes isolated from these cells. The two proteins share 54% homology with each other but are unrelated to the previously identified DGAT gene family (designated DGAT1), which is related to the acyl CoA:cholesterol acyltransferase gene family, or to any other gene family with ascribed function. This report identifies a new gene family, including members in fungi, plants and animals, which encode enzymes with DGAT function. To distinguish the two unrelated families we designate this new class DGAT2 and refer to the M. ramanniana genes as MrDGAT2A and MrDGAT2B.  相似文献   

18.
哺乳动物DGAT基因及其生物学功能研究进展   总被引:1,自引:0,他引:1  
王彦  许恒勇  朱庆 《遗传》2007,29(10):1167-1167―1172
二酰基甘油酰基转移酶(DGAT, EC2.3.1.20)是一种微粒体酶, 与脂肪代谢、脂类在组织中的沉积有很大关系, 它的主要作用机制是使二酰甘油加上脂肪酸酰基形成三酰甘油。DGAT在细胞甘油代谢中起根本性的作用, 并在高等真核生物甘油三酯代谢途径如肠脂肪吸收、脂蛋白集合、脂肪形成和泌乳中发挥着重要的功能, 提示DGAT不仅是调控甘油三酯与脂肪酸之间的关键因子, 而且可能在动物脂肪沉积中起着关键的调控作用。  相似文献   

19.
We provide biochemical evidence that enzymes involved in the synthesis of triacylglycerol, namely acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:monoacylglycerol acyltransferase (MGAT), are capable of carrying out the acyl coenzyme A:retinol acyltransferase (ARAT) reaction. Among them, DGAT1 appears to have the highest specific activity. The apparent Km values of recombinant DGAT1/ARAT for retinol and palmitoyl coenzyme A were determined to be 25.9 ± 2.1 μM and 13.9 ± 0.3 μM, respectively, both of which are similar to the values previously determined for ARAT in native tissues. A novel selective DGAT1 inhibitor, XP620, inhibits recombinant DGAT1/ARAT at the retinol recognition site. In the differentiated Caco-2 cell membranes, XP620 inhibits ~85% of the Caco-2/ARAT activity indicating that DGAT1/ARAT may be the major source of ARAT activity in these cells. Of the two most abundant fatty acyl retinyl esters present in the intact differentiated Caco-2 cells, XP620 selectively inhibits retinyl–oleate formation without influencing the retinyl–palmitate formation. Using this inhibitor, we estimate that ~64% of total retinyl ester formation occurs via DGAT1/ARAT. These studies suggest that DGAT1/ARAT is the major enzyme involved in retinyl ester synthesis in Caco-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号