首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretically homogeneous glutathione peroxidase (EC 1.11.1.9) preparation from rat liver with a specific activity of 1.46 U/mg of protein and a yield of 7.2% was obtained using the purification procedure developed. The K M values for reduced glutathione and hydrogen peroxide were 0.033 and 0.208 mM, respectively. The enzymatic reaction had the following characteristics: the temperature optimum, 32°C; the pH optimum, 7.4; and the activation energy, 29.1 kJ/mol. The molecular weight of the enzyme was 88 kDa.  相似文献   

2.
A psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L was purified by ammonium sulfate fractionation and three steps of chromatography. The yield was up to 25.1% of total glutathione reductase in the crude enzyme extract. The glutathione reductase activity was characterized by the spectrophotometric method under different conditions. Purified glutathione reductase was separated by SDS-PAGE, which furnished a homogeneous band. The native molecular mass of the enzyme was 115 kDa. Apparent Km values for NADPH and NADH (both at 0.5 mmol L−1 oxidized glutathione) were 22.3 and 83.8 μmol L−1, respectively. It was optimally active at pH 7.5, and it was stable from pH 5 to 9. Its optimum temperature was 25°C, with activity at 0°C 23.5% of the maximum. Its optimum ion strength and optimum Mg2+ were 50–90 and 7.5 mmol L−1, respectively. Ca2+, Mg2+, and cysteine substantially increased the activity of the enzyme but chelating agents, heavy metals (Cd2+, Pb2+, Cu2+, Zn2+, etc.), NADPH, and ADP had significant inhibitory effects. This glutathione reductase can be used to study the adaptation and mechanism of catalysis of psychrophilic enzymes, and it has a high potential as an environmental biochemical indicator under extreme conditions.  相似文献   

3.
Climate change and increasing temperatures are global concerns. Well adapted to desert life, the camel (Camelus dromedarius) lives most of its life under high environmental stress and represents an ideal model for studying desert adaptation among mammals. Glutathione peroxidase is the principal antioxidant defense system capable of protecting cells from oxidative stress. Glutathione Peroxidase from camel liver was purified (11.64-fold purification with 1.73% yield) and characterized The molecular weight of the enzyme was estimated to be about 69 kDa by gel filtration and 34 kDa by SDS-PAGE, implying dimeric structure of the protein. An optimum temperature of 47°C and an optimum pH of 7.8 were found. This enzyme is a typical SH-enzyme that is inhibited by D,L-dithiothreitol and β-mercaptoethanol and sensitive to bivalent cations. The enzyme had common specificity toward hydroperoxides and high specificity for reduced glutathione. The Km and Vmax values for hydrogen peroxide and reduced glutathione were 0.57 and 2.10 mM and 1.11 and 0.87 U/mg, respectively. The purified enzyme contained 16 ng of selenium per mg of protein. Our results show that the camel glutathione peroxidse exhibits properties different of those reported for other mammalian species. Lower molecular weight, homodimeric structure, higher optimum temperature, relatively low optimum pH, high affinity for hydrogen peroxide at low concentration of reduced glutathione and very low content of selenium could be explained by adaptation of the camel to living in the desert under intense environmental stress.  相似文献   

4.
关于巯基和Mn~(2+)介导豆壳过氧化物酶氧化藜芦醇的研究   总被引:1,自引:0,他引:1  
藜芦醇作为非酚型木素模型物具有较高的氧化还原电位,豆壳过氧化物酶(soybeanhullperoxidase,SHP,EC.1.11.1.7)通过依赖于过氧化氢的正常过氧化物酶催化循环不能氧化藜芦醇,但在还原型谷胱甘肽、Mn2+和有机酸络合剂存在下却可以通过不依赖于过氧化氢的氧化酶反应途径完成对藜芦醇的氧化,产物为藜芦醛,反应最适pH为4.2。动力学研究表明该反应遵循顺规序列反应机制;对藜芦醇的表观KM值为4.3mmol/L,对谷胱甘肽的表观KM值为4.8mmol/L。巯基还原剂二硫苏糖醇、L-半胱氨酸和β-巯基乙醇亦可替代还原型谷胱甘肽促进藜芦醇氧化  相似文献   

5.
Glutathione reductase (EC 1.6.4.2) was purified from spinach (Spinacia oleracea L.) leaves by affinity chromatography on ADP-Sepharose. The purified enzyme has a specific activity of 246 enzyme units/mg protein and is homogeneous by the criterion of polyacrylamide gel electrophoresis on native and SDS-gels. The enzyme has a molecular weight of 145,000 and consists of two subunits of similar size. The pH optimum of spinach glutathione reductase is 8.5–9.0, which is related to the function it performs in the chloroplast stroma. It is specific for oxidised glutathione (GSSG) but shows a low activity with NADH as electron donor. The pH optimum for NADH-dependent GSSG reduction is lower than that for NADPH-dependent reduction. The enzyme has a low affinity for reduced glutathione (GSH) and for NADP+, but GSH-dependent NADP+ reduction is stimulated by addition of dithiothreitol. Spinach glutathione reductase is inhibited on incubation with reagents that react with thiol groups, or with heavymetal ions such as Zn2+. GSSG protects the enzyme against inhibition but NADPH does not. Pre-incubation of the enzyme with NADPH decreases its activity, so kinetic studies were performed in which the reaction was initiated by adding NADPH or enzyme. The Km for GSSG was approximately 200 M and that for NADPH was about 3 M. NADP+ inhibited the enzyme, assayed in the direction of GSSG reduction, competitively with respect to NADPH and non-competitively with respect to GSSG. In contrast, GSH inhibited non-competitively with respect to both NADPH and GSSG. Illuminated chloroplasts, or chloroplasts kept in the dark, contain equal activities of glutathione reductase. The kinetic properties of the enzyme (listed above) suggest that GSH/GSSG ratios in chloroplasts will be very high under both light and dark conditions. This prediction was confirmed experimentally. GSH or GSSG play no part in the light-induced activation of chloroplast fructose diphosphatase or NADP+-glyceraldehyde-3-phosphate dehydrogenase. We suggest that GSH helps to stabilise chloroplast enzymes and may also play a role in removing H2O2. Glucose-6-phosphate dehydrogenase activity may be required in chloroplasts in the dark in order to provide NADPH for glutathione reductase.Abbreviations GSH reduced form of the tripeptide glutathione - GSSG oxidised form of glutathione  相似文献   

6.
The formaldehyde dehydrogenase (EC 1.2.1.1) from the yeast Pichia pastoris IFP 206 was purified to homogeneity. The enzyme had a molecular weight of 84,000 daltons and was composed of two identical subunits of a molecular weight of 39,000 daltons. The N-terminal end of the subunits is blocked. The protein showed 6,3 free -SH groups per mole and 12,5 in the presence of NAD+. Enzyme stability was increased by addition of glycerol during the purification.

The enzyme activity is NAD+ and glutathione dependent. The reaction product is S formylglutathione. The presence of an S-formylglutathione hydrolase (EC 3.1.2.12) in the cell free extract was detected. The formaldehyde dehydrogenase showed an optimum pH of 7.9 and an optimum temperature of 47°C. The activation energy was 3.2 kcal/mol. The Michaelis constants for NAD+ and S-hydroxymethyl glutathione were respectively 0.24 mM and 0.26 mM.  相似文献   

7.
A new silver nanoparticles (AgNPs)/carboxylated multiwalled carbon nanotubes (c-MWCNT)/polyaniline (PANI) film has been synthesized on Au electrode using electrochemical techniques. The enzyme glutathione oxidase (GSHOx) (EC 1.8.3.3) was immobilized covalently on the surface of AgNPs/c-MWCNT/PANI/Au electrode to construct the glutathione biosensor. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared (FTIR) spectrophotometry. The biosensor showed optimum response within 4s at +0.4V vs. Ag/AgCl, pH 6.0 and 35 °C, with a linear working range of 0.3-3500 μM and a detection limit of 0.3 μM. The glutathione biosensor was employed for measurement of glutathione content in hemolysated erythrocyte (RBC). The sensor was evaluated with 97.77% and 99.16% recovery of added glutathione in hemolysated RBC and 2.4% and 6.3% within and between batch coefficients of variation (CVs) respectively. The enzyme electrode lost 50% of its initial activity after 300 uses over a period of 3 months, when stored at 4 °C. The biosensor has the advantages over earlier biosensors in terms of greater stability, lower response time and no interference by a number of RBC hemolysate substances.  相似文献   

8.
Flowering in cotton (Gossypium hirsutum L.) is a sensitive stage to water-deficit stress, but the effects on metabolism are not well understood. The objective of this study was to monitor gas exchange responses of cotton plants under conditions of limited water supply and evaluate the effects on the carbohydrate concentrations and glutathione reductase levels in the cotton flower. Growth chamber experiments were conducted in 2008 and 2009, with normal day/night conditions of 32/24 °C and optimum quantities of Hoagland's nutrient solution applied until flowering. Treatments were imposed at flowering and consisted of control (Control), where optimum quantities of water were applied, and water stress (WS) where 50% of optimum quantity of water was supplied. Water-deficit stress resulted in a significant decrease in leaf stomatal conductance. Leaf photosynthetic and respiration rates were similarly decreased compared to the control. Ovary and style water potential of water-stressed leaves were significantly higher compared to the water potential of water stressed leaves, indicating that cotton flowers are fairly resistant to changes in the water status of the plant. However, carbohydrate concentrations of water-stressed pistils (ovary and style) were significantly increased compared to the control and a similar pattern was observed in the levels of glutathione reductase of water-stressed pistils. In conclusion, water-deficit stress during flowering resulted in significant decreases in leaf gas exchange functions as well as leaf water potential. Cotton pistils appeared to be less sensitive since they were able to maintain water potential similar to the control under limited water supply and increase glutathione reductase levels. However, pistil carbohydrate metabolism was significantly affected resulting in accumulation of both hexose and sucrose indicating a perturbation in sucrose cleaving and hexose utilizing enzymes that could potentially have as a consequence a decrease in fertilization and seed set efficiency.  相似文献   

9.
To evaluate the role of exogenous application of a phytochelating agent glutathione in increasing resistance against different heavy metals stress, nodal explants excised from 28-day-old in vitro seedlings of Spilanthes calva L. were cultured on Murashige and Skoog’s medium supplemented with 10 μM benzyl adenine and five different concentrations (1, 5, 50, 100, or 200 mg/l) of four heavy metals: As2O3, CuSO4, ZnSO4, or Pb(NO3)2. Data were recorded for percent survival, shoot number, and shoot length after 28 d of heavy metal treatment. All four heavy metals severely inhibited growth and morphogenesis. Pb proved most inhibitory whereas Zn was least effective. Pb was further selected to study the reversal effect of glutathione on morphogenesis. The addition of different concentrations (1, 5, 10, or 25 mg/l) of glutathione to media containing the Pb resulted in a significant improvement in almost all growth parameters. Inclusion of glutathione at 10 mg/l was optimum for maximum reversal of the negative effects of heavy metals on morphogenesis.  相似文献   

10.
An extremely thermophilic, obligately anaerobic, sulphur-metabolizing archaebacterium of the order Thermococcales, previously isolated from a thermal pool at Kuirau Park, Rotorua, New Zealand, partially described, and designated isolate ANI, Thermococcales was further characteized. The isolate was a regular coccus of 0.5–2.0 mm in diameter, was strictly anaerobic, chemoorganotrophic, and fermentative. Peptone, yeast extract, or casein served as carbon and nitrogen source, and a variety of amino acids and glucose, but not organic acids, carbohydrates, or other sugars supported growth in the presence of peptone (0.1%). Major metabolic end products were H2, sulphide, acetate, isobutyrate, and isovalerate/2-methylbutyrate. Isolate ANI had a temperature optimum of 75–80°C, a pH optimum of 7.4, and a sodium chloride concentration optimum of 50mM. No growth was observed in the absence of sodium chloride (or lithium chloride) and sulphur (or cystine or oxidized glutathione).  相似文献   

11.
Abstract: Cell-free extracts of Methanosarcina frisia contain high thiosulfate sulfur transferase (TST) (rhodanese), slight thiosulfate reductase but no thiosulfate: acceptor oxidoreductase activity. Neither adenylylsulfate reductase nor sulfite: acceptor oxidoreductase activity could be detected. TST is an acidic protein with an M r of 25 000 and was enriched by ion-exchange chromatography and gel filtration. The enzyme has a temperature optimum at 60°C and a pH optimum at pH 11. The K m values for thiosulfate and cyanide are 0.53 mM and 1.57 mM, respectively. Low concentrations of cysteine, glutathione, dithioerythritol, and dihydrolipoate increase the activity of the enzyme while unphysiological concentrations of these effectors cause a decrease. Sulfite and N -bromosuccinimide inhibit the energy activity extremely.  相似文献   

12.
Soybean lipoxygenase-mediated cooxidation of reduced glutathione (GSH) and concomitant superoxide generation was examined. The oxidation of GSH was dependent on the concentration of linoleic acid (LA), GSH, and the enzyme. The optimal conditions to observe maximal enzyme velocity included the presence of 0.42 mM LA, 2 mM GSH, and 50 pmole of enzyme/mL. The GSH oxidation was linear up to 10 minutes and exhibited a pH optimum of 9.0. The reaction displayed a Km of 1.49 mM for GSH and Vmax of 1.35 ± 0.02 μmoles/min/nmole of enzyme. Besides LA, arachidonic and γ-linolenic acids also supported the lipoxygenase-mediated GSH oxidation. Hydrogen peroxide and 13-hydroperoxylinoleic acid supported GSH cooxidation, but to a very limited extent. Oxidized glutathione (GSSG) was identified as the major product of the reaction based on the depletion of nicotinamide-adenine dinucleotide 3′-phosphate (NADPH) in the presence of glutathione reductase. The GSH oxidation was accompanied by the reduction of ferricytochrome c, which can be completely abolished by superoxide dismutase (SOD), suggesting the generation of superoxide anion radicals. Under optimal conditions, the rate of superoxide generation (measured as the SOD-inhibitable reduction of ferricytochrome c) was 10 ± 1.0 nmole/min/nmole of enzyme. These results clearly suggest that lipoxygenase is capable of oxidizing GSH to GSSG and simultaneously generating superoxide anion radicals, which may contribute to oxidative stress in cells under certain conditions.  相似文献   

13.
A sensitive and simple analytical strategy for the detection of sodium cromoglycate (SCG) has been established based on a readily detectable fluorescence quenching effect of SCG for glutathione‐capped (GSH‐capped) CdTe quantum dots (QDs). The fluorescence of GSH‐capped CdTe QDs could be efficiently quenched by SCG through electron transfer from GSH‐capped CdTe QDs to SCG. Under optimum conditions, the response was linearly proportional to the concentration of SCG between 0.6419 and 100 µg/mL, with a correlation coefficient (R) of 0.9964; the detection limit (3δ/K) was 0.1926 µg/mL. The optimum conditions and the influence of coexisting foreign substances on the reaction were also investigated. The very effective and simple method reported here has been successfully applied to the determination of SCG in synthetic and real samples. It is believed that the established approach could have good prospects for application in the fields of clinical diseases diagnosis and treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
温度对谷胱甘肽分批发酵的影响及动力学模型   总被引:16,自引:2,他引:16  
研究了24~32℃范围内产朊假丝酵母生产谷胱甘肽的分批发酵过程,发现较高温度对细胞生长有促进作用,而较低温度则更有利于谷胱甘肽产量的提高。应用改进的Logistic和LuedekingPiret方程分别对细胞生长动力学和谷胱甘肽合成动力学进行了模拟,得到不同温度下各种动力学参数。在此基础上,进一步研究了温度同细胞生长动力学参数之间的内在联系,得到谷胱甘肽分批发酵过程中细胞浓度的变化同温度以及底物浓度之间的一般关系式:dX-dt=[0.0224(T+1.7)]2X(1-X/Xmax)1+S{8.26×10.6×exp[-31477/R/(T+273)]}。验证实验结果表明,该模型具有很好的适用性。  相似文献   

15.
A soluble enzyme (glutathione S-aryl transferase) which converts parathion and related insecticidal organophosphorus triesters to S-p-nitrophenylglutathione and the corresponding dialkyl phosphorothioic or phosphoric acid has been identified and assayed in vertebrate liver. The activity of this enzyme can be differentiated from that of the analogous glutathione S-alkyl transferase also present in rat tissues. Its relationship to other known glutathione S-aryl transferases remains to be established but considerable differences in optimum pH have been observed.  相似文献   

16.
高产谷胱甘肽的酵母菌选育及其培养条件研究   总被引:18,自引:1,他引:17  
筛选到一株具有较高GSH产量的酵母菌株S.cerevisiae2165,然后以该菌株为出发菌,采用紫外照射,紫外照射 LiCl联合处理,亚硝基胍(MNNG)等诱变处理,获得一株高产GSH的酿酒酵母优良菌株S.cerevisiaeJN-5-8。该菌株具有稳定的遗传性能,在经过优化的培养条件下培养24h,其GSH产量达到339.1mg/L。比出发菌株提高2.2倍。  相似文献   

17.
A. Serrano  A. Llobell 《Planta》1993,190(2):199-205
Two isoforms (isoenzymes) of glutathione reductase (NADPH: oxidized glutathione oxidoreductase, EC 1.6.4.2; GR) were clearly resolved when enzyme preparations partially purified from the unicellular alga Chlamydomonas reinhardtii were subjected to column chromatofocusing in the pH range from 8 to 4. One isoform (GR I) exhibited an almost electroneutral isoelectric point (pI, 6.9–7.1) and the other (GR II) was a very acidic protein (pI, 4.7–4.9). Both GRs are, however, homodimeric flavoproteins with similar molecular masses of approx. 127 kDa. Cross-reaction with an antibody against the cyanobacterial GR allowed determination of their subunit molecular masses by Western blotting after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a value of 66 kDa being estimated in both cases. The two algal GR isoforms showed similar K m values for the oxidized form of glutathione (approx. 50 M). However, the K m values for NADPH were different, being 7 M and 28 M for GR I and GR II, respectively. The two isoforms also differed in their optimum pH. Thus, whereas GR I showed a clear maximum at neutral pH, GR II exhibited a broader optimum around pH 8.5 and was more active in the alkaline range. The relative contribution of the two isoforms to the total activity in enzyme preparations of cells disrupted by two different methods indicates that GR I should be a cytoplasmic isoform and GR II a plastidic isoform. The physiological roles of the GR isoenzymes found in Chlamydomonas are discussed and some of their properties compared with those of GRs isolated from other photosynthetic organisms.Abbreviations GSSG glutathione, oxidized form - GR NAD-PH-glutathione reductase (EC 1.6.4.2) - G3P glyceraldehyde-3-phosphate - pI isoelectric point - SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate This work was supported in part by grants NO. PB 87–401, PB 90–99 and BIO 91–1078 of the DGICYT (Ministerio de Educatión y Ciencia, Spain) and the Autonomous Government of Andalusia (Spain). Postdoctoral aid from the Alexander von Humboldt Foundation (Bonn, FRG) to A.S. is also acknowledged.  相似文献   

18.
Hydrogen peroxide (H2O2) scavenging systems of spruce (Picea abies) needles were investigated in both extracts obtained from the extracellular space and extracts of total needles. As assessed by the lack of activity of symplastic marker enzymes, the extracellular washing fluid was free from intracellular contaminations. In the extracellular washing fluid ascorbate, glutathione, cysteine, and high specific activities of guaiacol peroxidases were observed. Guaiacol peroxidases in the extracellular washing fluid and needle homogenates had the same catalytic properties, i.e. temperature optimum at 50°C, pH optimum in the range of pH 5 to 6 and low affinity for guaiacol (apparent Km = 40 millimolar) and H2O2 (apparent Km = 1-3 millimolar). Needle homogenates contained ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, and catalase, but not glutathione peroxidase activity. None of these activities was detected in the extracellular washing fluid. Ascorbate and glutathione related enzymes were freeze sensitive; ascorbate peroxidase was labile in the absence of ascorbate. The significance of extracellular antioxidants for the detoxification of injurious oxygen species is discussed.  相似文献   

19.
The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 μg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min.  相似文献   

20.
Light-dependent Reduction of Oxidized Glutathione by Ruptured Chloroplasts   总被引:1,自引:1,他引:0  
Crude extracts of pea shoots (Pisum sativum) catalyzed oxidized glutathione (GSSG)-dependent oxidation of NADPH which was attributed to NADPH-specific glutathione reductase. The pH optimum was 8 and the Km values for GSSG and NADPH were 23 μm and 4.9 μm, respectively. Reduced glutathione (GSH) inhibited the reaction. Crude extracts also catalyzed NADPH-dependent reduction of GSSG; the ratio of the rate of NADPH oxidized to GSH formed was 0.49. NADH and various substituted mono- and disulfides would not substitute for NADPH and GSSG respectively. Per mg of chlorophyll, enzyme activity of isolated chloroplasts was 69% of the activity of crude extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号