首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct hemolytic activity, dependent on phospholipase A (PLA) activity, was located in the particulate subcellular fraction (P30) of Trichomonas vaginalis. We identified soluble direct and indirect hemolytic activities in the spent medium and soluble fraction (S30) of T. vaginalis strain GT-13. Spent medium showed the highest specific indirect hemolytic activity (SIHA) at pH 6.0 (91 indirect hemolytic units [HU]/mg/hr). Spent medium and P30, but not S30, showed direct hemolytic activity. PLA activity was protein dose dependent and time dependent. The highest PLA activity was observed at pH 6.0. All trichomonad preparations showed phospholipase A1 (PLA A1) and phospholipase A2 (PLA A2) activities. Indirect and direct hemolytic activity and PLA A1 and PLA A2 diminished at pH 6.0 and 8.0 with increasing concentrations of Rosenthal's inhibitor. The greatest effect was observed with 80 microM at pH 6.0 on the SIHA of S30 (83% reduction) and the lowest at pH 8.0, also on the SIHA of S30 (26% reduction). In conclusion, T. vaginalis contains particulate and soluble acidic, and alkaline direct and indirect hemolytic activities, which are partially dependent on alkaline or acidic PLA A1 and PLA A2 enzymes. These could be responsible for the contact-dependent and -independent hemolytic and cytolytic activities of T. vaginalis.  相似文献   

2.
In the present report the enzymatic properties of an ATP diphosphohydrolase (apyrase, EC 3.6.1.5) in Trichomonas vaginalis were determined. The enzyme hydrolyses purine and pyrimidine nucleoside 5'-di- and 5'-triphosphates in an optimum pH range of 6.0--8.0. It is Ca(2+)-dependent and is insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (5 mM). A significant inhibition of ADP hydrolysis (37%) was observed in the presence of 20 mM sodium azide, an inhibitor of ATP diphosphohydrolase. Levamisole, a specific inhibitor of alkaline phosphatase, and P(1), P(5)-di (adenosine 5'-) pentaphosphate, a specific inhibitor of adenylate kinase, did not inhibit the enzyme activity. The enzyme has apparent K(m) (Michaelis Constant) values of 49.2+/-2.8 and 49.9+/-10.4 microM and V(max) (maximum velocity) values of 49.4+/-7.1 and 48.3+/-6.9 nmol of inorganic phosphate x min(-1) x mg of protein(-1) for ATP and ADP, respectively. The parallel behaviour of ATPase and ADPase activities and the competition plot suggest that ATP and ADP hydrolysis occur at the same active site. The presence of an ATP diphosphohydrolase activity in T. vaginalis may be important for the modulation of nucleotide concentration in the extracellular space, protecting the parasite from the cytolytic effects of the nucleotides, mainly ATP.  相似文献   

3.
The N-acetyl-galactosamine specific lectin from Macrotyloma axillare seeds (LMA) was purified by precipitation and ion exchange chromatography. The LMA 0.2 mol L(-1) fraction showed hemagglutinating activity on erythrocytes A1. The results for molecular mass determinations were about 28 kDa. The LMA pH-dependent assays showed best hemagglutinating activity at pH 6.0-8.0; being decreased at acidic/alkaline conditions and by EDTA treatment. LMA is a tetramer at pH 8.2 and a dimer at pH 4.0. Human erythrocytes from ABO system confirmed the A1 specificity for LMA. This new methodology is useful and easy, with low costs, for lectin purification in large amounts.  相似文献   

4.
This work describes the ability of living Trichomonas vaginalis to hydrolyze extracellular ATP (164.0 +/- 13.9 nmol Pi/h x 10(7) cells). This ecto-enzyme was stimulated by ZnCl2, CaCl2 and MgCl2, was insensitive to several ATPase and phosphatase inhibitors and was able to hydrolyze several nucleotides besides ATP. The activity was linear with cell density and with time for at least 60 min. The optimum pH for the T. vaginalis ecto-ATPase lies in the alkaline range. D-galactose, known to be involved in adhesion of T. vaginalis to host cells, stimulated this enzyme by more than 90%. A comparison between two strains of T. vaginalis showed that the ecto-ATPase activity of a fresh isolate was twice as much as that of a strain axenically maintained in culture, through daily passages, for several years. The results suggest a possible role for this ecto-ATPase in adhesion of T. vaginalis to host cells and in its pathogenicity.  相似文献   

5.
Potent cytolytic activity was exhibited by proteins extracted from three sea anemones viz. Heteractis magnifica, Stichodactyla haddoni and Paracodylactis sinensis by affecting the red blood corpuscles (RBC) and the mouse fibroblast cell line (L929) and leukemia cell line (P388). Crude toxin of all the three anemone species induced spontaneous hemolysis of chicken, goat and human erythrocytes. The crude toxin of H. magnifica (0.98 mg/ml) elicited hemolysis at levels of 4096, 512 and 4096 HU (hemolytic unit) in chicken, goat and human erythrocytes respectively. Subsequently, the crude toxin of S. haddoni (0.82 mg/ml) exhibited a hemolytic activity of 256, 128 and 512 HU and that of P. sinensis (0.60 mg/ml) had a hemolytic activity of 128, 4096 and 512 HU. Most of the partially purified proteins of these anemones also exhibited the activity against the three different erythrocytes. The viability of L929 and P388 was adversely affected on adding the crude toxins. The symptoms of toxicity shown by the cells were rounding, lysis and detachment from the substratum. These effects were the least in S. haddoni, as compared to those the crude toxins of the other two species. Inhibition of growth of L929 exhibited by the toxin of the three species ranged between 61.08 and 93.38%. Similarly, inhibition of the growth of P388 ranged between 51.32 and 86.16%. The present investigation reveal the cytotoxic nature of anemone toxins.  相似文献   

6.
To study the role of vaginal flora and pH in the pathogenesis of Trichomonas vaginalis, an intravaginal mouse model of infection was established. By employing this model, the vaginal flora and pH of mice could be monitored for changes caused by the parasite. As a baseline, the endemic vaginal flora of BALB/c mice was examined first and found to consist mainly of Staphylococcus aureus and Enterococcus species (32-76%). Lactobacilli and enteric bacilli were moderate (16-32%) in their frequency of isolation, and the prevalence of both anaerobic species and coagulase-negative staphylococci was low (4-16%). Vaginal pH was recorded at 6.5 +/- 0.3. Estrogenization, which was required for a sustained T. vaginalis infection, did not significantly alter vaginal flora; however, a slight rise in the number of bacterial species isolated per mouse and a drop in vaginal pH (6.2 +/- 0.5) were observed. Trichomonas vaginalis-infected mice did not appear to show significant changes in vaginal flora although vaginal pH was slightly increased. This mouse model could have applications in both immunologic and pathogenic studies of T. vaginalis and, with further modifications, aid in the study of protist-bacterial interactions.  相似文献   

7.
Pichia pastoris is a successful system for expressing heterologous proteins and its fermentation pH is always maintained below 7.0. However, particular proteins are unstable under acidic conditions, such as methionine adenosyltransferase (MAT), and thus fermentation under acidic pH conditions is unsuitable because protein activity is lost owing to denaturation. Here, a strategy employing alkaline pH in the late fermentation period was developed to improve MAT production. Initially, P. pastoris KM71 was transformed with the mat gene to overexpress MAT. After 72 h of in vitro incubation at different pH values, the expressed MAT displayed highest stability at pH 8.0; however, pH 8.0 inhibited cell growth and induced cell rupture, thus affecting protein production. To balance MAT stability and Pichia cell viability, different pH control strategies were compared. In strategy A (reference), the induction pH was maintained at 6.0, whereas in strategy B, it was gradually elevated to 8.0 through a 25 h transition period (80 ~ 105 h). MAT activity was 0.86 U/mg (twofold higher than the control). However, MAT content was reduced by 50% when compared with strategy A, because of proteases released upon cell lysis. To improve cell viability under alkaline conditions, glycerol was added in addition to methanol (strategy C). When compared with strategy B, the MAT-specific activity remained nearly constant, whereas the expression level increased to 1.27 g/L. The alkaline pH control strategy presented herein for MAT production represents an excellent alternative for expressing proteins that are stable only under alkaline conditions.  相似文献   

8.
The effect of a transmembrane pH gradient on the ouabain, bumetanide, and phloretin resistant H+ efflux was studied in rabbit erythrocytes. Proton equilibration was reduced by the use of DIDS (125 microM) and acetazolamide (1 mM). H+ efflux from acid loaded erythrocytes (pHi = 6.1) was measured in a K+ (145 mM) medium, pH0 = 8.0, in the presence and absence of 60 microM 5,N,N-dimethyl-amiloride (DMA). The H+ efflux rate in a K+-containing medium was 116.38 +/- 4.5 mmol/l cell X hr. Substitution of Nao+ for Ko+ strongly stimulated H+ efflux to 177.89 +/- 7.9 mmol/l cell X hr. The transtimulation of H+ efflux by Nao+ was completely abolished by DMA falling to values not different from controls with an ID50 of about 8.6 X 10(-7) M. The sequence of substrate selectivities for the external transport site were Na greater than greater than greater than Li greater than choline, Cs, K, and Glucamine. The transport system has no specific anion requirement, but is inhibited by NO3-. The DMA sensitive H+ efflux was a saturable function of [Na+]o, with an apparent Km and Vmax of about 14.75 +/- 1.99 mM and 85.37 +/- 7.68 mmol/l cell X hr, respectively. However, the Nao+-dependent and DMA-sensitive H+ efflux was sigmoidally activated by [H+]i, suggesting that Hi+ interacts at both transport and modifier sites. An outwardly directed H+ gradient (pHi 6.1, pH = 8.0) also promoted DMA sensitive Na+ entry (61.2 +/- 3.0 mmol/l cell X hr) which was abolished when pHo was reduced to 6.0. The data is therefore consistent with the presence of a Na+/H+ exchange system in rabbit erythrocytes.  相似文献   

9.
The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient.  相似文献   

10.
Desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocytes results in a 40-65% decrease in agonist-stimulated adenylate cyclase activity and correlates with increased phosphorylation of beta-adrenergic receptors. To assess the role of phosphorylation in desensitization, membranes from isoprenaline- and dibutyryl cyclic AMP-desensitized turkey erythrocytes were incubated with alkaline phosphatase for 30 min at 37 degrees C, pH 8.0. In both preparations alkaline phosphatase treatment significantly decreased desensitization of agonist-stimulated adenylate cyclase activity by 40-75% (P less than 0.05). Similar results were obtained after alkaline phosphatase treatment of membranes from isoprenaline- and dibutyryl cyclic AMP-desensitized duck erythrocytes. Moreover, alkaline phosphatase treatment of membranes from duck erythrocytes desensitized with 12-O-tetradecanoylphorbol 13-acetate returned agonist-stimulated adenylate cyclase activity to near control values. In all experiments, inclusion of 20 mM-sodium phosphate to inhibit alkaline phosphatase during treatment of membranes attenuated the enzyme's effect on agonist-stimulated adenylate cyclase activity. In addition, alkaline phosphatase treatment of membranes from control and isoprenaline-desensitized turkey erythrocytes increased the mobility of beta-adrenergic-receptor proteins, specifically photoaffinity-labelled with [125I]iodocyanopindolol-diazirine, on SDS/polyacrylamide-gel electrophoresis. The increased mobility of the beta-adrenergic-receptor proteins after alkaline phosphatase treatment of membranes was again inhibited by 20 mM-phosphate. These results provide additional evidence for a direct role for phosphorylation in desensitization of adenylate cyclase-coupled beta-adrenergic receptors in avian erythrocytes.  相似文献   

11.
We examined the pH sensitivity of the H+/organic cation antiport system in brush-border membranes isolated from rat renal cortex. The uptake of tetraethylammonium, a typical organic cation, in the absence of an H+ gradient had a marked pH dependence with an optimum pH of 7.0, while the uptake of p-aminohippurate, an organic anion, and D-glucose was almost consistent in the pH range of 6.0-8.0. The decreased tetraethylammonium uptake by brush-border membrane vesicles, suspended in an acidic pH buffer or an alkaline pH buffer, was completely recovered by subsequent treatment of the vesicles with a pH 7.0 buffer. The pH sensitivity of tetraethylammonium uptake was not changed in the presence of either carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore, or valinomycin (voltage-clamped condition). Kinetic parameters of tetraethylammonium uptake were changed in a pH-dependent manner, although Eadie-Hofstee plots of tetraethylammonium uptake were linear in the pH range of 6.0-8.0, indicating the existence of one mode of transport system at various pH values. At an acidic pH, the Km was increased without any change in Vmax value, compared with the values at pH 7.0. On the other hand, at an alkaline pH, the Vmax was decreased without a change in Km value. These results suggest that the H+/organic cation antiport system in renal brush-border membranes is very sensitive to pH (optimum pH of 7.0), in contrast to organic anion and D-glucose transport systems, and that pH is an important factor to regulate the activity of the H+/organic cation antiport system, as well as H+ gradient (a driving force).  相似文献   

12.
The marine bacterium Vibrio alginolyticus, containing 470 mM-K+ and 70 mM-Na+ inside its cells, was able to regulate the cytoplasmic pH (pH(in)) in the narrow range 7.6-7.8 over the external pH (pH(out)) range 6.0-9.0 in the presence of 400 mM-Na+ and 10 mM-K+. In the absence of external K+, however, pHin was regulated only at alkaline pH(out) values above 7.6. When the cells were incubated in the presence of unusually high K+ (400 mM) and 4 mM Na+, the pH(in) was regulated only at acidic pH(out) values below 7.6. These results could be explained by postulating a K+/H+ antiporter as the regulator of pH(in) over the pH(out) range 6.0-9.0. When Na(+)-loaded/K(+)-depleted cells were incubated in 400 mM-Na+ in the absence of K+, an inside acidic delta pH was generated at pH(out) values above 7.0. After addition of diethanolamine the inside acidic delta pH collapsed transiently and then returned to the original value concomitant with the extrusion of Na+, suggesting the participation of a Na+/H+ antiporter for the generation of an inside acidic delta pH. In the presence of 400 mM-K+, at least 5 mM-Na+ was required to support cell growth at pH(out) below 7.5. An increase in Na+ concentration allowed the cells to grow at a more alkaline pH(out). Furthermore, cells containing more Na+ inside could more easily adapt to grow at alkaline pH(out). These results indicated the importance of Na+ in acidification of the cell interior via a Na+/H+ antiporter in order to support cell growth at alkaline pH(out) under conditions where the activity of a K+/H+ antiporter is marginal.  相似文献   

13.
Simultaneous production of xylanase and pectinase by Bacillus pumilus AJK under submerged fermentation was investigated in this study. Under optimized conditions, it produced 315?±?16 IU/mL acidic xylanase, 290?±?20 IU/mL alkaline xylanase, and 88?±?9 IU/mL pectinase. The production of xylano-pectinolytic enzymes was the highest after inoculating media (containing 2% each of wheat bran and Citrus limetta peel, 0.5% peptone, 10?mM MgSO4, pH 7.0) with 2% of 21-hr-old culture and incubated at 37°C for 60?hr at 200?rpm. Xylanase retained 100% activity from pH 6.0 to10.0 after 3?hr of incubation, while pectinase showed 100% stability from pH 6.0 to 9.0 even after 6?hr of incubation. Cost-effective and concurrent production of xylanase and pectinase by a bacterial isolate in the same production media suggests its potential for various biotechnological applications. This is the first report of simultaneous production of industrially important extracellular xylano-pectinolytic enzymes by B. pumilus.  相似文献   

14.
Two isoforms of alpha-glucosidase were purified from the parasitic protist Trichomonas vaginalis. Both consisted of 103 kDa subunits, but differed in pH optimum and substrate specificity. Isoform 1 had a pH optimum around 4.5 and negligible activity on glucose oligomers other than maltose, while isoform 2 with a pH optimum of 5.5 hydrolyzed also such substrates at considerable rates. Neither had activity on glycogen or starch. Isoform 1 had a specific activity for hydrolysis of maltose of 30 U/mg protein and isoform 2 101 U/mg protein. The Km values were 0.4 mM and 2.0 mM, respectively. Isoform 2 probably corresponds to the activity detected on the cell surface.  相似文献   

15.
Choline kinase (EC 2.7.1.32) was investigated in plasmodium falciparum-infected erythrocytes. Disrupted infected erythrocytes had a choline kinase activity of 1.9 +/- 0.2 nmol phosphorylcholine/10(7) infected cells per h, whereas the activity in normal uninfected erythrocytes was less than 6 pmol/10(7) cells per h. A broad alkaline optimal pH (7.9-9.2) was observed. The Km values for choline and ATP were 79 +/- 20 microM, and 1.3 +/- 0.3 mM, respectively. ATP concentrations higher than 12 mM inhibited choline kinase. Maximal activity was registered with a Mg2+ concentration of 10 mM, whereas its replacement by Mn2+, or other divalent cations, involved a decrease in choline kinase activity of at least 75%. Inhibition by products of the reaction, such as phosphorylcholine and ADP was investigated. In plasmodium knowlesi-infected erythrocytes, choline kinase had similar properties, but with a much higher specific activity of 16.4 +/- 2.1 nmol/10(7) infected cells per h. Subcellular fractionation of P. knowlesi-infected erythrocyte suspensions revealed that choline kinase was located exclusively in the cytosol of the parasite. We show that this enzyme is a useful index of parasite cytosolic content leakage, when infected erythrocytes are fractionated by saponin lysis or nitrogen decompression.  相似文献   

16.
1. The activity of tyrosine hydroxylase (TH; EC 1.14.16.2) was estimated in vitro in crude tissue homogenates from the posterior cardinal veins (chromaffin tissue) and the coeliac ganglion (adrenergic neurons) of the Atlantic cod, Gadus morhua. 2. TH from the chromaffin tissue showed its highest activity at pH = 6.0 and a temperature of 30-35 degrees C, and was stimulated by low concentrations of catalase (20 micrograms/ml). 3. Estimations of the absolute TH activity in vitro showed values of 110 +/- 30 nmol/g X hr for the chromaffin tissue and 1120 +/- 280 nmol/g X hr for the coeliac ganglion.  相似文献   

17.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.  相似文献   

18.
The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.  相似文献   

19.
Phospholipid-deacylating enzymes of rat stomach mucosa   总被引:3,自引:0,他引:3  
1. Rat stomach mucosa exhibited three distinguishable phospholipid-deacylating enzyme activities: lysophospholipase, phospholipase A1 and phospholipase A2. 2. The lysophospholipase hydrolyzed 1-palmitoyl lysophosphatidylcholine to free fatty acid and glycerophosphorylcholine. This enzyme had an optimum pH of 8.0, was heat labile, did not require Ca2+ for maximum activity and was not inhibited by bile salts or buffers of high ionic strength. 3. Phospholipase A2 and phospholipase A1 deacylated dipalmitoyl phophatidylcholine to the corresponding lyso compound and free fatty acid. The specific activity of phospholipase A2 was 2--4-fold higher than that of phospholipase A1 under all the conditions tested. Both activities were enhanced 4--7.5-fold in the presence of bile salts at alkaline pH and 11-18-fold at acidic pH. 4. In the absence of bile salts, phospholipase A1 exhibited pH optima at 6.5 and 9.5 and phospholipase A2 at pH 6.5, 8.0 and 9.5. The pH optima for phospholipase A1 were shifted to pH 3.0, 6.0 and 9.0 in presence of sodium taurocholate; the activity was detected only at a single pH of 9.5 in the presence of sodium deoxycholate and at pH 10.0 in the presence of sodium glycocholate. Phospholipase A2 optimum activity was displayed at pH 3.0, 6.0 and 8.0 in presence of taurocholage, pH 7.5 and 9.0, in presence of glycocholate and only at pH 9.0 in presence of deoxycholate. 5. Ca2+ was essential for optimum activity of phospholipases A1 and A2. But phospholipase A1 lost complete activity in presence of 0.5 mM ethyleneglycolbis-(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) at pH 6.0, whereas phospholipase A2 lost only 50%. 6. Phospholipases A1 and A2 retained about 50% of their activities by heating at 75 degrees for 10 min. At 100 degrees, phospholipase A1 retained 22% of its activity, whereas phospholipase A2 retained only 7%.  相似文献   

20.
米氏凯伦藻溶血毒素的溶血反应特征   总被引:3,自引:0,他引:3  
探讨了温度、pH值、二价阳离子等对米氏凯伦藻(Karenia mikimotoi Hasen)溶血毒素溶血活性的影响,分析了米氏凯伦藻溶血毒素的溶血反应特征.结果表明,实验室培养米氏凯伦藻的溶血活性约为64.69±6.43 HU L-1,单个藻细胞的溶血活性为6.17±0.61×10-6 HU;在实验温度(0~37℃)下,溶血活性随温度的增加而增加;pH6.0时的溶血活性最高;Cu2+、Mg2+、Mn2+、Ca2+、Co2+、Zn2+和Hg2+等对米氏凯伦藻的溶血活性的影响不同.离子浓度为5 mmol/L时,Hg2+的抑制作用最强.高浓度Hg2+对红细胞的集合效应不但阻止了Hg2+进入血细胞诱导的溶血作用,而且阻止了毒素对细胞膜的破坏,但这种抑制作用可被EDTA消除.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号