首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among ectothermic tetrapods, amphibians are by far the mostdiverse group at high elevations in the tropical Andes. Thisarticle asks whether this pattern reflects intrinsic aspectsof amphibian natural history. An interdisciplinary analysissuggests that amphibians have a long evolutionary history atmoderate Andean elevations and that adaptation for activityat low temperature occurred frequently and independently indifferent taxa. One conclusion is that temperature is unlikelyto be the only or the main factor constraining some unrepresentedanuran taxa that do not reach high elevations. Other physicalvariables (e.g. the effects of ultraviolet radiation on eggdevelopment) could better explain anuran diversity along tropicalaltitudinal gradients. In contrast, heliothermic taxa, suchas lizards, might indeed be constrained by the low and variabletemperatures that characterize high tropical elevations. Ecologicalgradients, therefore, might not affect ectothermic tetrapodsin a similar manner, and differential susceptibility to bioticand abiotic factors that change with elevation might help toexplain current patterns of distribution and diversity.  相似文献   

2.
The metabolic performance of ectotherms is expected to be driven by the environment in which they live. Ecologically similar species with contrasting elevation distributions occurring in sympatry at mid‐elevations, provide good models for studying how physiological responses to temperature vary as a function of adaptation to different elevations. Under sympatry, at middle elevations, where divergent species ranges overlap, sympatric populations are expected to have similar thermal responses, suggesting similar local acclimation or adaptation, while observed differences would suggest adaptation to each species’ core range. We analysed the metabolic traits of sympatric species pairs from three ectotherm groups: reptiles (Reptilia: Lacertidae), amphibians (Amphibia: Salamandridae) and beetles (Coleoptera: Carabidae), living at different elevations, in order to test how adaptation to different elevations affects metabolic responses to temperature. We experimentally tested the thermal response of respiration rate (RR) and estimated potential metabolic activity (PMA) at three temperature regimes surrounding the groups’ optimal activity body temperatures. RR was relatively similar among groups and showed a positive response to increasing temperature, which was more pronounced in the high‐elevation species of reptiles and beetles. Relative to RR, PMA displayed a stronger and more consistent positive response to increased temperature in all three groups. For all three groups, the average biochemical capacity for metabolism (PMA) was higher in the range‐restricted, high‐elevation species, and this difference increased at higher temperatures in a consistent manner. These results, indicating consistent pattern in three independently evolved animal groups, suggest a ubiquitous adaptive syndrome and represent a novel understanding of the mechanisms shaping spatial biodiversity patterns. Our results also highlight the importance of geographic patterns for the mechanistic understanding of adaptations in physiological traits, including species’ potential to respond/adapt to global climate changes.  相似文献   

3.
Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space‐for‐time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude‐specific effect of temperature on the zinc‐induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude‐ and temperature‐specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc‐induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients.  相似文献   

4.
Aim Physiology is emerging as a basis for understanding the distribution and diversity of organisms, and ultimately for predicting their responses to climate change. Here we review how the difference in physiology of terrestrial vertebrate ectotherms (amphibians and reptiles) and endotherms (birds and mammals) is expected to influence broad‐scale ecological patterns. Location Global terrestrial ecosystems. Methods We use data from the literature and modelling to analyse geographic gradients in energy use and thermal limits. We then compare broad‐scale ecological patterns for both groups with expectations stemming from these geographic gradients. Results The differences in thermal physiology between ectotherms and endotherms result in geographically disparate macrophysiological constraints. Field metabolic rate (FMR) is stable or decreases slightly with temperature for endotherms, while it generally increases for ectotherms, leading to opposing latitudinal gradients of expected FMR. Potential activity time is a greater constraint on the distributions of ectotherms than endotherms, particularly at high latitudes. Differences in the primary correlates of abundance and species richness for two representative taxonomic groups are consistent with the consequences of these basic physiological differences. Ectotherm richness is better predicted by temperature, whereas endotherm richness is more strongly associated with primary productivity. Finally, in contrast to endotherms, ectotherm richness is not strongly related to abundance. Main conclusions Differences in thermal physiology affect how organisms interact with and are constrained by their environment, and may ultimately explain differences in the geographic pattern of biodiversity for endotherms and ectotherms. Linking the fields of physiological and broad‐scale ecology should yield a more mechanistic understanding of how biodiversity will respond to environmental change.  相似文献   

5.
Some biologists embrace the classical view that changes in behavior inevitably initiate or drive evolutionary changes in other traits, yet others note that behavior sometimes inhibits evolutionary changes. Here we develop a null model that quantifies the impact of regulatory behaviors (specifically, thermoregulatory behaviors) on body temperature and on performance of ectotherms. We apply the model to data on a lizard (Anolis cristatellus) and show that thermoregulatory behaviors likely inhibit selection for evolutionary shifts in thermal physiology with altitude. Because behavioral adjustments are commonly used by ectotherms to regulate physiological performance, regulatory behaviors should generally constrain rather than drive evolution, a phenomenon we call the "Bogert effect." We briefly review a few other examples that contradict the classical view of behavior as the inevitable driving force in evolution. Overall, our analysis and brief review challenge the classical view that behavior is invariably the driving force in evolution, and instead our work supports the alternative view that behavior has diverse--and sometimes conflicting--effects on the directions and rates at which other traits evolve.  相似文献   

6.
Two competing hypotheses have been suggested to explain thermal sensitivity of lizards to environmental conditions. These are the static and the labile hypotheses. The static hypothesis posits that thermal physiology is evolutionary conservative and consequently relatively insensitive to directional selection. Contrarily, the labile hypothesis states that thermal physiology does respond readily to directional selection in some lizard taxa. In this paper, we tested both hypotheses among species of Liolaemus lizards. The genus Liolaemus is diverse with about 200 species, being broadly distributed from central Perú to Tierra del Fuego at the southern end of South America. Data of field body temperature (Tb) from Liolaemus species were collected from the literature. Based on the distributional range of the species we also collected data of mean annual ambient temperatures. We observed that both the traditional analysis and the phylogenetic approach indicate that in the genus Liolaemus Tb of species varies in a manner that is consistent with ecological gradient of ambient temperature. The data suggest that the thermal physiology of Liolaemus lizards is evolutionarily flexible, and that this plasticity has been partially responsible for the colonization of a wide array of thermal environments.  相似文献   

7.
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.  相似文献   

8.
Thermal adaptation to spatially varying environmental conditions occurs in a wide range of species, but what is less clear is the nature of fitness trade‐offs associated with this temperature adaptation. Here, populations of the intertidal copepod Tigriopus californicus are examined at both local and latitudinal scales to determine whether these populations have evolved differences in their survival under high temperature stress. A clear pattern of increasing high temperature stress tolerance is seen with decreasing latitude, consistent with temperature adaptation. Additionally, there is also evidence for significant variation in thermal tolerance on a smaller scale. The competitive fitness of pairs of northern and southern copepod populations were also examined under a series of lower, more moderate temperatures. These fitness assays show that the southern populations that have the best survival under extreme high temperatures have lowered competitive fitness at the lower temperatures tested, whereas the fitness of the southern populations exceeded that of the northern populations at the highest temperatures tested. Combined, these results suggest that there may be evolutionary trade‐offs between performance at high and stressful temperatures and fitness at moderate temperatures in this species.  相似文献   

9.
Vertebrate ectotherms may deal with changes of environmental temperatures by behavioral and/or physiological mechanisms. Reptiles inhabiting tropical highlands face extreme fluctuating daily temperatures, and extreme values and intervals of fluctuations vary with altitude. Anolis heterodermus occurs between 1800 m to 3750 m elevation in the tropical Andes, and is the Anolis species found at the highest altitude known. We evaluated which strategies populations from elevations of 2200 m, 2650 m and 3400 m use to cope with environmental temperatures. We measured body, preferred, critical maximum and minimum temperatures, and sprint speed at different body temperatures of individuals, as well as operative temperatures. Anolis heterodermus exhibits behavioral adjustments in response to changes in environmental temperatures across altitudes. Likewise, physiological traits exhibit intrapopulation variations, but they are similar among populations, tended to the “static” side of the evolution of thermal traits spectrum. The thermoregulatory behavioral strategy in this species is extremely plastic, and lizards adjust even to fluctuating environmental conditions from day to day. Unlike other Anolis species, at low thermal quality of the habitat, lizards are thermoconformers, particularly at the highest altitudes, where cloudy days can intensify this strategy even more. Our study reveals that the pattern of strategies for dealing with thermal ambient variations and their relation to extinction risks in the tropics that are caused by global warming is perhaps more complex for lizards than previously thought.  相似文献   

10.
Over the last 50 yr, thermal biology has shifted from a largely physiological science to a more integrated science of behavior, physiology, ecology, and evolution. Today, the mechanisms that underlie responses to environmental temperature are being scrutinized at levels ranging from genes to organisms. From these investigations, a theory of thermal adaptation has emerged that describes the evolution of thermoregulation, thermal sensitivity, and thermal acclimation. We review and integrate current models to form a conceptual model of coadaptation. We argue that major advances will require a quantitative theory of coadaptation that predicts which strategies should evolve in specific thermal environments. Simply combining current models, however, is insufficient to understand the responses of organisms to thermal heterogeneity; a theory of coadaptation must also consider the biotic interactions that influence the net benefits of behavioral and physiological strategies. Such a theory will be challenging to develop because each organism's perception of and response to thermal heterogeneity depends on its size, mobility, and life span. Despite the challenges facing thermal biologists, we have never been more pressed to explain the diversity of strategies that organisms use to cope with thermal heterogeneity and to predict the consequences of thermal change for the diversity of communities.  相似文献   

11.
Shawn R. Crowley 《Oecologia》1985,66(2):219-225
Summary The thermal sensitivity of sprint-running ability was investigated in two populations of Sceloporus undulatus that occupy thermally distinct habitats. Integration of field and laboratory data indicates that lizards inhabiting a cool, high-elevation habitat are frequently active at body temperatures that retard sprint-running velocity, which could affect adversely their ability to evade predators and to capture prey. These negative effects might be expected to select for local adaptation of thermal physiology. No differences in thermal physiology (optimal temperature for sprinting, critical thermal limits) were found, however, between lizards from the two habitats.Preferred body temperature of Sceloporus undulatus is lower than the body temperature that maximizes sprint velocity but is still well within an optimal performance range where lizards can run at better than 95% of maximum velocity. Analysis of data from other studies shows a similar concordance of preferred body temperature and temperatures that maximize sprint velocity for some, but not all lizard species studied.Low diversity of predators and high levels of food may compensate in part for the reduced sprinting ability of highelevation lizards active at low body temperatures. The lack of population differentiation supports the view that lizard thermal physiology is evolutionarily conservative.  相似文献   

12.
A manipulative field experiment, to investigate the interaction of physiology with ecolgy, is described. Body temperatures of four ecotypes of the lizard Anolis oculatus were studied in their natural habitats on the ecologically diverse island of Dominica. A sample of each ecotypic population was then transferred to one of four 12 times 12 metre experimental enclosures, situated in one of the original habitats. The four in situ populations were found to differ significantly in mean body temperature, and, to a lesser extent, in the degree of thermoregulation. Howerve, no differences were found between enclosed populations. This experiment demonstrates that the apparent differences in the thermal preference of the different ecotypes are attributable solely to the availabiltity of thermal microclimates in the different habitats. The apparent lack of specialization of physiogical traits is surprising in view of the fine-scaled evolutionary adjustment of morphology to geographic variation in local environment that has been recorded in this species, and suggests that more detailed examination of physiology and ecology would be fruitful.  相似文献   

13.
Thermophysiological traits, particularly thermal tolerances and sensitivity, are key to understanding how organisms are affected by environmental conditions. In the face of ongoing climate change, determining how physiological traits structure species’ ranges is especially important in tropical montane systems. In this study, we ask whether thermal sensitivity in physiological performance restricts montane lizards to high elevations and excludes them from the warmer environments reported at low elevations. For three montane lizard species in the Brazilian Atlantic Forest, we collect thermophysiological data from lizards in the highest elevation site of each species’ distribution, and ask how well the individuals exhibiting those traits would perform across the Atlantic Forest. We use microclimatic and organism‐specific models to directly relate environmental conditions to an organism's body temperature and physiological traits, and estimate measures of thermophysiological performance. Our findings demonstrate that thermophysiological constraints do not restrict montane lizards to high elevations in this system, and thus likely do not determine the warm boundaries of these montane species’ distributions. Results also suggest that competition may be important in limiting the warm boundaries of the species’ ranges for two of the focal species. These experimental results suggest that caution should be used when claiming that physiology drives patterns of diversity and endemism within montane environments. They also highlight the importance of interdisciplinary experimental studies that bridge the fields of evolution and ecology to improve predictions of biological responses to future environmental shifts.  相似文献   

14.
For more than six decades, physiological ecologists have intensively studied diverse aspects of lizard thermal biology. Nevertheless, a recent review notes that prior studies have generally ignored gender differences in body temperatures, thermal sensitivity, or other aspects of thermal biology. We concur that gender differences have been ignored and should be examined: if gender differences prove common, standard protocols for studying lizard natural history, thermal physiology, and ecology will require significant modification. To help resolve this issue, we conducted a retrospective analysis of our huge data set on the thermal biology of many desert lizards (more than 11,000 individuals from 56 species in seven major clades) from Africa, Australia, and North America. Results are unambiguous: gender differences in body temperature, air temperature, and time of activity--and thus in field thermal biology--are almost always minor. In fact, mean body temperatures of males and females differ by less than 1 degrees C in 80.4% of species. For desert lizards, gender differences in thermal biology are the exception, not the rule. Nevertheless, gender differences should be examined when feasible because exceptions--though likely rare--could be biologically interesting.  相似文献   

15.
《Journal of bryology》2013,35(1):159-178
Abstract

Using net assimilation rate as a measure of physiological activity, reciprocal transplants of Hylocomium splendens, Pleurozium schreberi and Racomitrium lanuginosum between Yläne (60°55′N) and Kevo (69°45′N) and between Kevo and Spitzbergen (78°13′N) were used to investigate adaptation to latitude. It was found that physiological stress increased northwards and that adaptation to different latitudes was largely due to acclimation. The importance of day length and temperature to mosses in extreme latitudes is discussed.  相似文献   

16.
Organismal performance is strongly linked to temperature because of the fundamental thermal dependence of chemical reaction rates. However, the relationship between the environment and body temperature can be altered by morphology and ecology. In particular, body size and body shape can impact thermal inertia, as high surface area to volume ratios will possess low thermal mass. Habitat type can also influence thermal physiology by altering the opportunity for thermoregulation. We studied the thermal ecology and physiology of an elongate invertebrate, the bark centipede (Scolopocryptops sexspinosus). We characterized field body temperature and environmental temperature distributions, measured thermal tolerance limits, and constructed thermal performance curves for a population in southern Georgia. We found evidence that bark centipedes behaviorally thermoregulate, despite living in sheltered microhabitats, and that performance was maintained over a broad range of temperatures (over 20 °C). However, both the thermal optimum for performance and upper thermal tolerance were much higher than mean body temperature in the field. Together, these results suggest that centipedes can thermoregulate and maintain performance over a broad range of temperatures but are sensitive to extreme temperatures. More broadly, our results suggest that wide performance breadth could be an adaptation to thermal heterogeneity in space and time for a species with low thermal inertia.  相似文献   

17.
Ectotherms from higher latitudes can generally perform over broader temperature ranges than tropical ectotherms. This pattern is thought to reflect trends in temperature variability: tropical ectotherms evolve to be ‘thermal specialists’ because their environment is thermally stable. However, the tropics are also hotter, and most physiological rates increase exponentially with temperature. Using a dataset spanning diverse ectotherms, we show that the temperature ranges ectotherms tolerate (the difference between lower and upper critical temperatures, and between optimum and upper critical temperatures) generally represents the same range of equivalent biological rates (e.g. metabolism) for cool‐ and warm‐adapted species, and independent of latitude or elevation. This suggests that geographical trends in temperature variability may not be the ultimate mechanism underlying latitudinal and elevational trends in thermal tolerance. Rather, we propose that tropical ectotherms can perform over a narrower range of temperatures than species from higher latitudes because the tropics are hotter.  相似文献   

18.
How does climate variation limit the range of species and what does it take for species to colonize new regions? In this issue of Molecular Ecology, Campbell‐Staton et al. ( 2018 ) address these broad questions by investigating cold tolerance adaptation in the green anole lizard (Anolis carolinensis) across a latitudinal transect. By integrating physiological data, gene expression data and acclimation experiments, the authors disentangle the mechanisms underlying cold adaptation. They first establish that cold tolerance adaptation in Anolis lizards follows the predictions of the oxygen‐ and capacity‐limited thermal tolerance hypothesis, which states that organisms are limited by temperature thresholds at which oxygen supply cannot meet demand. They then explore the drivers of cold tolerance at a finer scale, finding evidence that northern populations are adapted to cooler thermal regimes and that both phenotypic plasticity and heritable genetic variation contribute to cold tolerance. The integration of physiological and gene expression data further highlights the varied mechanisms that drive cold tolerance adaptation in Anolis lizards, including both supply‐side and demand‐side adaptations that improve oxygen economy. Altogether, their work provides new insight into the physiological and genetic mechanisms underlying adaptation to new climatic niches and demonstrates that cold tolerance in northern lizard populations is achieved through the synergy of physiological plasticity and local genetic adaptation for thermal performance.  相似文献   

19.
The pace-of-life syndrome (POLS) suggests that behavioral traits are correlated and integrate within a fast–slow physiological continuum. At the fast extreme, individuals having higher metabolic rates are more active, exploratory, and bold with the opposite suite of traits characterizing those at the slow physiological extreme. A recent framework suggests that behavioral types may also differ consistently in their cognitive style. Accordingly, we propose that cognition could be further incorporated into the POLS framework comprised of behavioral and thermal physiological traits. Under this premise, fast behavioral types having high thermal traits are predicted to acquire a novel task faster but at the cost of accuracy while slow behavioral types with low thermal traits would be more attentive, responding to cues at a slower rate leading to higher accuracy and flexibility. This was tested by measuring physiological and behavioral traits in delicate skinks (Lampropholis delicata) and testing their learning ability. Correlations were detected between cognition and behavior but not thermal physiology. Contrary to our predictions, individual positioning along these axes opposed our predicted directions along the fast–slow continuum. Fast lizards preferring lower body temperatures expressed higher activity, exploration, sociality, and boldness levels, and learned the discrimination learning task at a slower rate but made the most errors. Additionally, modelling results indicated that neither thermal physiology, behavior, or their interaction influenced cognitive performance. Although the small number of animals completing the final stages of the learning assays limits the strength of these findings. Thus, we propose that future research involving a greater sample size and number of trials be conducted so as to enhance our understanding into how the integration of cognitive style, behavior, and physiology may influence individual fitness within natural populations.  相似文献   

20.
Plastic responses to temperature during embryonic development are common in ectotherms, but their evolutionary relevance is poorly understood. Using a combination of field and laboratory approaches, we demonstrate altitudinal divergence in the strength of effects of maternal thermal opportunity on offspring birth date and body mass in a live-bearing lizard (Niveoscincus ocellatus). Poor thermal opportunity decreased birth weight at low altitudes where selection on body mass was negligible. In contrast, there was no effect of maternal thermal opportunity on body mass at high altitudes where natural selection favored heavy offspring. The weaker effect of poor maternal thermal opportunity on offspring development at high altitude was accompanied by a more active thermoregulation and higher body temperature in highland females. This may suggest that passive effects of temperature on embryonic development have resulted in evolution of adaptive behavioral compensation for poor thermal opportunity at high altitudes, but that direct effects of maternal thermal environment are maintained at low altitudes because they are not selected against. More generally, we suggest that phenotypic effects of maternal thermal opportunity or incubation temperature in reptiles will most commonly reflect weak selection for canalization or selection on maternal strategies rather than adaptive plasticity to match postnatal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号