首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATPase activity of coupled Zajdela hepatoma mitochondria was rendered uncoupler-sensitive by decreasing free fatty acids content in mitochondria or by preincubation of mitochondria with ATP prior to the addition of an uncoupler. The latter treatment resulted in an accelerated transport of ATP into the organelles. The effect of carbonylcyanide-m-chlorophenylhydrazone and oligomycin on the decrease of the ATP content in whole Zajdela hepatoma cells indicated that the hepatoma mitochondrial ATPase is stimulated by uncouplers invivo. The conclusion is that the uncoupler-insensitive ATPase activity of coupled Zajdela hepatoma mitochondria is exhibited only by isolated organelles and results from a reduced ATPADP translocase activity.  相似文献   

2.
Summary Acid secreting cells are rich in mitochondria and contain high levels of cytoplasmic carbonic anhydrase II. We have studied the ultrastructural distribution of a mitochondrial isoenzyme, carbonic anhydrase V, in two different acid-secreting epithelial cells, gastric parietal cells and kidney intercalated cells as well as in osteoclasts, which are the main bone resorbing cells. The mitochondria differ in carbonic anhydrase V content in these three acid-producing cells: gastric parietal cell mitochondria show strong immunolabelling for this isoenzyme, osteoclast mitochondria faint labelling and kidney intercalated cell mitochondria no labelling. The immunolabelling was located in the mitochondrial matrix, often in close contact with the inner mitochondrial membrane. These results show that mitochondrial carbonic anhydrase levels are not related to acid-transporting activity.  相似文献   

3.
Summary Ultrastructural localization of ATPase at high pH in the presence of Ca2+ showed that activity in thymocyte precursors was stronger than in mature thymocytes. The activity was localized in the nuclear envelope, rough endoplasmic reticulum, Golgi apparatus and mitochondria. The difference in activity was attributed to a marked decrease in ATPase-containing organelles, mainly the endoplasmic reticulum in the mature thymocytes. This appears to be related to the proliferative activity of the cells rather than to the immunological maturity of the thymocytes. A very strong activity, also localized in the same organelles, was present in the macrophages and interdigitating cells which might have a secretory function and possibly contribute to thymocyte maturation. The Ca2+—ATPase activity in the nuclear envelope—endoplasmic reticulum system suggests that these may be the sites for storage and regulation of cytoplasmic calcium.  相似文献   

4.
Biochemical analyses of mitochondrial marker substances, especially cardiolipin and oligomycin-sensitive ATPase [EC 3.6.1.3], as well as electron microscopic observations were carried out to eludicate the process of mitochondrial development in annaerobic yeast cells. Cardiolipin was found to be localized in the mitochondria in anaerobic cells. Its cellular content was a little higher in the stationary phase than in the exponential phase in glucose-grown cells and increased further in galactose-grown cells. The lipid content of the mitochondrial preparation obtained from glucose-grown stationary cells was nearly as high as that from galactose-grown cells. It was also comparable to that of aerobic cells in the stationary phase, where mitochondria are fully developed. Both cellular and mitochondrial levels of oligomycin-sensitive ATPase activity were also found to rise markedly in galactose-grown anaerobic cells, although not in stationary phase cells grown anaerobically on glucose. These high levels of the mitochondrial markers indicate a developmental change in mitochondrial structure even in anaerobically grown cells, which lack mitochondrial cytochromes. In the process of aerobic adaptation, respiratory system formation was observed to occur much faster in galactose-grown cells than in glucose-grown cells, and not to be inhibited by chloramphenicol and high concentrations of glucose structure in anaerobic cells. The developmental change was also corroborated by electron microscopic observations, which revealed the occurrence of two types of mitochondria in anaerobic cells. One was found in glucose-repressed cells and was characterized by the presence of numerous electron-dense granules in the matrix. In contrast, the other type, found in glucose-derepressed cells, had an electron-lucent matrix. No crista membrane was seen in either type of mitochondria in anaerobic cells, although the infoldings of the inner membrane, which partition the matrix into two parts and therefore are called "septum membranes," appeared frequently in the stationary phase cells. On the basis of these results, the process of mitochondrial development in yeast cells is discussed.  相似文献   

5.
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders.Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.  相似文献   

6.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

7.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 +/- 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the beta-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

8.
Preliminary studies on yeast peroxisomes have suggested that the membrane of these organelles may contain a proton-pumping ATPase. It has been reported that peroxisome-associated activity is similar to the F0-F1 mitochondrial type ATPase in its sensitivity to azide at pH 9.0, but characteristics of the plasma membrane type ATPase are also evident in peroxisomal preparations in that they exhibit pH 6.5 activity that is sensitive to vanadate. A comparative study of the prominent organellar ATPase activities was undertaken as a probe into the existence of an enzyme that is unique to the peroxisome, and biochemical properties of yeast mitochondrial, plasma membrane, together with peroxisomally-associated H(+)-ATPases are presented. Enzyme marker analysis of sucrose gradient fractions revealed a high degree of correlation between the amount of azide-sensitive pH 9.0 ATPase activity and that of the mitochondrial membrane marker, cytochrome c oxidase, in peroxisomal preparations. Purified mitochondrial and peroxisomally-associated activities were highly sensitive to the presence of sodium azide, N,N' -dicyclohexylcarbodiimide (DCCD) and venturicidin when measured at pH 9.0. Comparisons of peroxisomal activities with those of the purified plasma membrane at pH 6.0 in the presence of azide showed similar sensitivity profiles with respect to inhibitors of yeast plasma membrane ATPases such as vanadate and p-chloromercuriphenyl-sulfonic acid (CMP). Purified peroxisomal membranes, furthermore, reacted with antibody to the mitochondrial F1 subunit (as revealed by Western blot analysis), and [35S] methionine-labeled, glucose-grown cells processed with unlabeled methanol-grown cells, yielded sucrose gradient fractions that were radioactive in bands that were also recognized by F1 antibody. Isolated fractions in these experiments had similar ratios of cpm:pH 9.0 ATPase activities, suggesting that this activity is mitochondrial in origin. The data presented for the characteristics of the peroxisomally-associated activity strongly suggest that the majority of the ATPase activity found in peroxisomal preparations is derived from other organelles.  相似文献   

9.
A cytochemical study using a lead precipitation technique has been made of the distribution of adenosine triphosphatase (ATPase) in mature and differentiating phloem and xylem cells of Nicotiana tabacum and Pisum sativum. The sites of ATPase localization in tobacco phloem were the plasma membrane, endoplasmic reticulum, mitochondria, dictyosomes, plasmodesmata, and the dispersed P proteins of mature sieve elements. In pea phloem sieve elements ATPase was localized in the endoplasmic reticulum, but was not associated with the P proteins or plasma membranes at any stage of their differentiation. In pea transfer cells ATPase activity was associated with the endoplasmic reticulum at all stages of their differentiation and with the plasma membrane of transfer cells that had formed wall ingrowths. In xylem cells of both tobacco and pea the patterns of ATPase activity was similar. At early stages of differentiation ATPase activity was associated with the plasma membrane and the endoplasmic reticulum. At intermediate stages of differentiation ATPase activity continued to be associated with the endoplasmic reticulum, but was no longer associated with the plasma membrane. At later stages of xylem element differentiation ATPase activity was associated with disintegrating organelles and with the hydrolyzing cell walls.  相似文献   

10.
The effect of the mitochondrial dye rhodamine 123 (Rho 123) on protein synthesis (PS) activity was investigated in mitochondria isolated from liver and from both chloroma and erythroleukemia tumors. Incorporation of labelled leucine into mitochondrial protein was used to measure the rate of PS. While PS specific activity was much higher in hematopoietic tumors mitochondria as compared to that of liver, the addition of increased concentration of Rho 123 in all tested organelles resulted in increased inhibition of PS to reach 75-82% with 10 micrograms/ml of the dye. Similar results were obtained with 10 micrograms/ml of chloramphenicol, the specific inhibitor of mitochondrial PS. Moreover, under the conditions of the study, the addition of Rho 123 to mitochondria did not trigger any ATPase activity, thus eliminating any competition for the energy source ATP between PS and ATPase. These results demonstrate that, in addition to its known inhibitory action on oxidative phosphorylation, the mitochondrial dye Rho 123 has a potent inhibitory effect on PS in both liver and hematopoietic tumors mitochondria.  相似文献   

11.
This paper describes the uncoupling effect of three isothiocyanates: p-bromophenylisothiocyanate, 4,4'-diisothiocyanatebiphenyl and beta-naphtylemthylisothiocyanate on the respiration of Ehrlich-Lettré cells and isolated mitochondria. The isothiocyanates are similar to other uncouplers (such as 2,4-dinitrophenol and carbonyl cyanide p-trifluoromethoxyphenylhydrazone) in that they: 1. stimulate respiration of state 4 mitochondria; 2. stimulate mitochondrial ATPase activity; 3. release the inhibition of mitochondrial respiration by oligomycin and 4. inhibit both mitochondrial respiration and mitochondrial ATPase activity at higher molar concentrations. The incoupling activity of these isothiocyanates correlates well with their biological activity. Maximal activation of a latent mitochondrial ATPase activity of rat liver mitochondria in the presence of p-bromophenylisothiocyanate was found at a concentration of 15 muM. The investigated isothiocyanates differ significantly in their solubility in organic solvents and their chemical reactivity. We assume that the greater the partition coefficient in a series of isothiocyanates grouped according to the increasing value of log P (partition coefficient for the system octanol/water, 25 degrees C), the greater will be their uncoupling activity, but only up to a certain degree. Any further increase of log P will be marked by a decrease of this activity.  相似文献   

12.
This article describes a quick basic method adapted for the purification of mammalian mitochondria from different sources. The organelles obtained using this protocol are suitable for the investigation of biogenetic activities such as enzyme activity, mtDNA, mtRNA, mitochondrial protein synthesis, and mitochondrial tRNA aminoacylation. In addition, these mitochondria are capable of efficient protein import and the investigation of mtDNA/protein interactions by DNA footprinting is also possible.  相似文献   

13.
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  相似文献   

14.
ATPase inhibitor protein, which blocks mitochondrial ATPase activity by forming an enzyme-inhibitor complex, was found to be synthesized as a larger precursor in a cell-free translation system directed by yeast mRNA. Other protein factors, which stabilize latent ATPase by binding to the enzyme-inhibitor complex, were also found to be formed as larger precursors. The precursor of ATPase inhibitor protein was transported into isolated yeast mitochondria and was cleaved to the mature peptide in the mitochondria. Impaired mitochondria lacking phosphorylation activity could not convert the precursor to the mature form. Neither antimycin A nor oligomycin alone exhibited a marked effect on the transport-processing of the precursor by intact mitochondria. However, when antimycin A was added with oligomycin, the transport-processing was markedly inhibited. The processing was also strongly inhibited by an uncoupler, carbonylcyanide p-trifluoro-methoxyphenyl hydrazone. The inhibition by the uncoupler was not relieved by ATP added externally. It is concluded that the transport-processing of precursor proteins requires intact mitochondria with a potential difference across the inner membrane.  相似文献   

15.
Flow cytometry combines the advantages of microscopy and biochemical analysis in a single highly sensitive technique for a rapid examination of numerous individual living cells. It has become a potent and essential tool in the studies of the physiology of the whole cell and its organelles. Rhodamine 123 is a vital fluorescent dye used in flow cytometry. As it is specifically concentrated in mitochondria because of the transmembrane potential that these organelles maintain in living cells, rhodamine 123 is thus a useful probe for monitoring the abundance and activity of mitochondria. A critical survey of the routine use of rhodamine 123 together with flow cytometry in mitochondrial research is presented.  相似文献   

16.
Highly purified peroxisomal fractions from rat liver contain ATPase activity (18.8 ± 0.1 nmol/min per mg, n = 6). This activity is about 2% of that found in purified mitochondrial fractions. Measurement of marker enzyme activities and immunoblotting of the peroxisomal fraction with an antiserum raised against the β-subunit of mitochondrial ATPase indicates that the ATPase activity in the peroxisomal fractions can not be ascribed to contamination with mitochondria or other subcellular organelles. From the sensitivity of the ATPase present in the peroxisomal fraction towards a variety of ATPase inhibitors, we conclude that it displays both V-type and F-type features and is distinguishable from both the mitochondrial F1F0-ATPase and the lysosomal V-type ATPase.  相似文献   

17.
In this study, we continue the investigation of a number of the properties of protomitochondria, which are young mitochondria of a smaller size that are present in animal cells. The protomitochondria were obtained from the rat liver by filtration of a total mitochondrial suspension through Millipore filters. The organelles contain the active respiratory chain as shown by the high rate of oxygen consumption during succinate and NADH oxidation. The shunt activity of succinate-tetrazolium reductase was lower and the activity of NADH-tetrazolium reductase was higher as compared with those in mitochondria. According to gel electrophoresis and gel filtration no qualitative differences between protomitochondria (0.25–0.45 µm) and mitochondria in their major protein composition were found. Nevertheless, there were some quantitative differences in several bands. Perhaps these differences reflect the process of intracellular maturation of protomitochondria to mitochondria. The data we obtained are important for understanding mitochondriogenesis in the animal cell.  相似文献   

18.
Archegonium development, beginning with the archegonial initial and culminating in the mature egg, was studied with the electron microscope. The ultrastructural features of the beginning stages in development of the archegonium are relatively similar to one another. Plasmodesmata occur between all adjacent cells at this time. After the secondary central cell is formed these protoplasmic connections are lost, and both axial and parietal cell lineages begin to show signs of ultrastructural differentiation. The mature egg is characterized by cytoplasm rich in ribosomes and larger organelles. Mitochondria and simplified plastids commonly display a juxtaposed association. As far as could be ascertained the numerous plastids and mitochondria in the egg of Marchantia arise through division of preexisting organelles and are not formed anew from evaginations of the nucleus. Blebbing of the nucleus produces polymorphic organelles which appear to be pinched off into the cytoplasm. The mature egg also contains vacuoles and lipid bodies toward its periphery, while dictyosomes and extensive endoplasmic reticulum occur throughout. The space between the wall cells and the mature egg appears to contain an amorphous substance. No extra membrane was observed around the mature egg.  相似文献   

19.
Protomitochondria (PRM) are intracellular mitochondrial germ organelles, precursors of mitochondria in specialized cells of animals. PRM have been isolated from rat liver by centrifugation and filtration through Millipore filters with pore diameters of 0.1 to 0.45 μm and characterized by fluorescence-based assay. PRM, having the volume many times smaller than that of light mitochondria (LM), did not differ much from the latter in protein, lipid and DNA composition, membrane charge, and some other parameters. At the same time, the activity of some enzymes of the respiratory chain (NADH dehydrogenase, succinate dehydrogenase) in PRM was even higher than that in mature mitochondria. The results obtained are important for understanding the processes of mitochondrial biogenesis in specialized cells of mammals.  相似文献   

20.
The vascular transfer cells in garlic scape havebeen examined with electron microscope. Their structure, distributive feature and adenosine triphosphatase (ATPase) activity are studied. The mature vascular transfer cells exhibit the characteristic cell wall ingrowths. The cell contents include a large nucleus, dense cytoplasm and various normal organelles. It is notable that there are numerous mitochondria with well developed, cristae. Plasmodesmata are extensively present in the wall, and transfer cells are connected to adjacent cells by them. The senescing transfer cells become more vacuolated and have a large central vacuole and dense parietal cytoplasm. Their wall ingrowths seem to degenerate and finally disappear. The transfer cells show a particular pattern of distribution in the vascular bundle of the garlic scape. Some of them are present between the vessels of xylem and the sieve tubes of phloem. However, more abundant cell wall ingrowths occur on those walls which abut on, or are close to the vessel of xylem. The other transfer cells are located between the sieve tubes and parenehyma cells. The phloem transfer cell which is adjacent to sieve tube has developed from companion cell. All the transfer cells are mainly concerned with the loading and unloading of sieve tubes. And they may play an important role in facilitating intensive material transfer between two independent systems (i.e. the vessels and sieve tubes, the symplast and apoplast). The results of the cytochemical localization of ATPase using a lead precipitation technique exhibit strong enzyme activity on the plasmalemma of the transfer cells. It is suggested that the transfer cells are especially active in solute movement through them to which cellular energy metabolism coupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号