首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the action of adenosine and GTP on KATP channels, using inside-out patch clamp recordings from dissociated single fibers of rat flexor digitorum brevis (FDB) skeletal muscle. In excised patches, KATP channels could be activated by a combination of an extracellular adenosine agonist and intracellular Mg2+-ATP and GTP or GTP-γ-S. The activation required hydrolyzable ATP and could be partially reversed with Mg2+, suggesting that it may involve a G-protein dependent phosphorylation of KATP channels. We found that KATP channels of the rat FDB could not be activated by Mg2+-ATP alone or by Mg2+-ATP in the presence of extracellular adenosine. Patches whose channel activity had been `rundown' by Ca2+ could not be recovered by adenosine, GTP or Mg2+-ATP. KATP channels activated by adenosine receptor agonists had a similar ATP sensitivity to those under control conditions; but adenosine appears to be able to switch these KATP channels from an inactive to an active mode. Received: 29 December 1995/Revised: 22 March 1996  相似文献   

2.
Pancreatic β-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.  相似文献   

3.
Pancreatic ATP-sensitive potassium (KATP) channels control insulin secretion by coupling the excitability of the pancreatic β-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed KATP channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that KATP channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases KATP channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic β-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native KATP channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic β-cells, we propose that PKC-regulated KATP channel trafficking may play a role in the regulation of insulin secretion.  相似文献   

4.
Active Na+ absorption by alveolar ENaC is the main driving force of liquid clearance at birth and lung edema resorption in adulthood. We have demonstrated previously that long-term modulation of KvLQT1 and KATP K+ channel activities exerts sustained control in Na+ transport through the regulation of ENaC expression in primary alveolar type II (ATII) cells. The goal of the present study was: 1) to investigate the role of the α-ENaC promoter, transfected in the A549 alveolar cell line, in the regulation of ENaC expression by K+ channels, and 2) to determine the physiological impact of K+ channels and ENaC modulation on fluid clearance in ATII cells. KvLQT1 and KATP channels were first identified in A549 cells by PCR and Western blotting. We showed, for the first time, that KvLQT1 activation by R-L3 (applied for 24 h) increased α-ENaC expression, similarly to KATP activation by pinacidil. Conversely, pharmacological KvLQT1 and KATP inhibition or silencing with siRNAs down-regulated α-ENaC expression. Furthermore, K+ channel blockers significantly decreased α-ENaC promoter activity. Our results indicated that this decrease in promoter activity could be mediated, at least in part, by the repressor activity of ERK1/2. Conversely, KvLQT1 and KATP activation dose-dependently enhanced α-ENaC promoter activity. Finally, we noted a physiological impact of changes in K+ channel functions on ERK activity, α-, β-, γ-ENaC subunit expression and fluid absorption through polarized ATII cells. In summary, our results disclose that K+ channels regulate α-ENaC expression by controlling its promoter activity and thus affect the alveolar function of fluid clearance.  相似文献   

5.
6.
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5 % Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K+ concentration and showed enhanced KATP activity. Tau supplementation normalized K+-induced secretion and enhanced glucose-induced Ca2+ influx in RHT islets. R islets presented lower Ca2+ influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.  相似文献   

7.

Background

ATP-sensitive potassium (KATP) channels in neurons regulate excitability, neurotransmitter release and mediate protection from cell-death. Furthermore, activation of KATP channels is suppressed in DRG neurons after painful-like nerve injury. NO-dependent mechanisms modulate both KATP channels and participate in the pathophysiology and pharmacology of neuropathic pain. Therefore, we investigated NO modulation of KATP channels in control and axotomized DRG neurons.

Results

Cell-attached and cell-free recordings of KATP currents in large DRG neurons from control rats (sham surgery, SS) revealed activation of KATP channels by NO exogenously released by the NO donor SNAP, through decreased sensitivity to [ATP]i. This NO-induced KATP channel activation was not altered in ganglia from animals that demonstrated sustained hyperalgesia-type response to nociceptive stimulation following spinal nerve ligation. However, baseline opening of KATP channels and their activation induced by metabolic inhibition was suppressed by axotomy. Failure to block the NO-mediated amplification of KATP currents with specific inhibitors of sGC and PKG indicated that the classical sGC/cGMP/PKG signaling pathway was not involved in the activation by SNAP. NO-induced activation of KATP channels remained intact in cell-free patches, was reversed by DTT, a thiol-reducing agent, and prevented by NEM, a thiol-alkylating agent. Other findings indicated that the mechanisms by which NO activates KATP channels involve direct S-nitrosylation of cysteine residues in the SUR1 subunit. Specifically, current through recombinant wild-type SUR1/Kir6.2 channels expressed in COS7 cells was activated by NO, but channels formed only from truncated isoform Kir6.2 subunits without SUR1 subunits were insensitive to NO. Further, mutagenesis of SUR1 indicated that NO-induced KATP channel activation involves interaction of NO with residues in the NBD1 of the SUR1 subunit.

Conclusion

NO activates KATP channels in large DRG neurons via direct S-nitrosylation of cysteine residues in the SUR1 subunit. The capacity of NO to activate KATP channels via this mechanism remains intact even after spinal nerve ligation, thus providing opportunities for selective pharmacological enhancement of KATP current even after decrease of this current by painful-like nerve injury.  相似文献   

8.
AimsDexmedetomidine is reported to have an effect on peripheral vasoconstriction; however, the exact mechanisms underlying this process are unclear. In this study, we hypothesized that dexmedetomidine-induced inhibition of vascular ATP-sensitive K+ (KATP) channels may be associated with this vasoconstriction. To test this hypothesis, we investigated the effects of dexmedetomidine on vascular KATP-channel activity at the single-channel level.Main methodsWe used cell-attached and inside-out patch-clamp configurations to examine the effects of dexmedetomidine on the activities of native rat vascular KATP channels, recombinant KATP channels with different combinations of various inwardly rectifying potassium channels (Kir6.0 family: Kir6.1, 6.2) and sulfonylurea receptor subunits (SUR1, 2A, 2B), and SUR-deficient channels derived from a truncated isoform of Kir6.2 subunit, namely, Kir6.2ΔC36 channels.Key findingsDexmedetomidine was observed to inhibit the native rat vascular KATP channels in both cell-attached and inside-out configurations. This drug also inhibited the activity of all types of recombinant SUR/Kir6.0 KATP channels as well as Kir6.2ΔC36 channels with equivalent potency.SignificanceThese results indicate that dexmedetomidine directly inhibits KATP channels through the Kir6.0 subunit.  相似文献   

9.
Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic cells where targets ATP-sensitive K+ (KATP) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic KATP channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic KATP channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of KATP channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes KATP channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.  相似文献   

10.
ATP-sensitive K+ (KATP) channels are distributed in a variety of cell types, including hippocampal neurons. These channels provide a link between electrical activity of cell membranes and cellular metabolism. The activity of KATP channels in hippocampal H19-7 neurons treated with or without short interfering RNAs (siRNAs) directed against Kir6.2 mRNA was investigated in this study. In single-channel recordings, cell exposure to diazoxide (30 μM) significantly prolonged the mean open time of KATP channels; however, neither closed-time kinetics nor the single-channel conductance of the channel was altered by this compound. However, in cells transfected with Kir6.2 siRNAs, diazoxide-stimulated activity of KATP channels was abolished. Based on single-channel recordings, the activity of KATP channels was mathematically constructed in a Markovian manner. The simulated activity of single KATP channels was incorporated in a modeled hippocampal neuron to assess how any changes in KATP-channel activity affect burst firing of action potentials (APs). The modeled neuron was adopted from the model of Xu and Clancy (2008). Specifically, to mimic the action of diazoxide, the baseline value of open time (τbas) of KATP channels was arbitrarily elevated, while varying number of active channels (NO) was set to simulate electrical behavior of Kir6.2 siRNAs-transfected cells. The increase of either NO or τbas depressed membrane excitability of modeled neuron. Fast-slow analysis of AP bursting from this modeled neuron also revealed that the increased KATP-channel activity shifted the voltage nullcline in an upward direction, thereby leading to a reduction of the repetitive spike regime. Taken together, it is anticipated that the increased activity of KATP channels caused by increasing NO or τbas contributes to or is responsible for burst firing of APs in hippocampal neurons if similar results occur in vivo.  相似文献   

11.
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.  相似文献   

12.
Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels.  相似文献   

13.
ATP-sensitive K+ (KATP) channels have been characterized in pituitary GH3 cells with the aid of the patch-clamp technique. In the cell-attached configuration, the presence of diazoxide (100 μm) revealed the presence of glibenclamide-sensitive KATP channel exhibiting a unitary conductance of 74 pS. Metabolic inhibition induced by 2,4-dinitrophenol (1 mm) or sodium cyanide (300 μm) increased KATP channel activity, while nicorandil (100 μm) had no effect on it. In the inside-out configuration, Mg-ATP applied intracellularly suppressed the activity of KATP channels in a concentration-dependent manner with an IC50 value of 30 μm. The activation of phospholipase A2 caused by mellitin (1 μm) was found to enhance KATP channel activity and further application of aristolochic acid (30 μm) reduced the mellitin-induced increase in channel activity. The challenging of cells with 4,4′-dithiodipyridine (100 μm) also induced KATP channel activity. Diazoxide, mellitin and 4,4′-dithiodipyridine activated the KATP channels that exhibited similar channel-opening kinetics. In addition, under current-clamp conditions, the application of diazoxide (100 μm) hyperpolarized the membrane potential and reduced the firing rate of spontaneous action potentials. The present study clearly indicates that KATP channels similar to those seen in pancreatic β cells are functionally expressed in GH3 cells. In addition to the presence of Ca2+-activated K+ channels, KATP channels found in these cells could thus play an important role in controlling hormonal release by regulating the membrane potential. Received: 19 June 2000/Revised: 13 September 2000  相似文献   

14.
Chai Y  Zhang DM  Lin YF 《PloS one》2011,6(3):e18191

Background

Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue.

Methods and Findings

Single-channel recordings of cardiac KATP channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions.

Conclusion

The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in particular), calmodulin and CaMKII, alongside of moderate channel suppression likely mediated by direct PKG phosphorylation of the channel or some closely associated proteins. The novel cGMP/PKG/ROS/calmodulin/CaMKII signaling pathway may regulate cardiomyocyte excitability by opening KATP channels and contribute to cardiac protection against ischemia-reperfusion injury.  相似文献   

15.
The presynaptic dopamine (DA) D2 receptor-mediated regulation of ATP-sensitive potassium (K+ ATP) channels was examined in slices of the rat caudate-putamen. When slices were incubated with the specific D2 receptor antagonist (–)-sulpiride (SLP), a concentration-dependent increase of extracellular DA release was observed. SLP-induced enhancement was completely antagonized by coincubation with the K+ ATP channel opener diazoxide (DIA). Treatment of slices with the D2 receptor agonist quinpirole (QUI) almost completely inhibited DA outflow induced by the K+ ATP channel blocker butanedione-monoxime (BDM). Coincubation of SLP and guanosine triphosphate (GTP) or its non-hydrolizable analogue guanylyl-5-imidodiphosphate [Gpp(NH)p], significantly reduced the SLP-induced effect on DA levels. Furthermore, we observed that BDM-induced DA outflow was markedly inhibited by G protein activators suggesting an additional receptor-independent regulation of K+ ATP channel gating. Our results suggest that PTX-sensitive G proteins are involved in the signal transduction between D2 receptors and K+ ATP channels. Furthermore, K+ ATP channels can be modulated in a receptor-independent mechanism by G protein activators.  相似文献   

16.
Allicin is a natural effective organosulfur compound isolated from garlic, which possesses many beneficial properties, such as antibacterial, anti-inflammatory, antimicrobial, hypotensive and hypolipidemic. In the present study, we investigated the effects and the underlying mechanisms of allicin on isolated mesenteric arteries (MAs). We examined MAs relaxation induced by allicin on rat-isolated mesenteric artery (MA) rings, the KATP channels with patch, and the expression of Kir6.1 and SUR2B with western blotting and NO production with Diaminofluorescein-FM diacetate (DAF-FMDA) in rat mesenteric artery smooth muscle cells (MASMCs). The results showed that allicin elicited the dose-dependent vasorelaxation effect with phenylephrine (PE) precontracted rat MA rings. The vasorelaxation effect was endothelium and NO independent but could be diminished by inhibition of PKA and KATP channels in the vascular smooth muscle. Allicin activated KATP channels in rat MASMCs, and the activation of KATP channels was inhibited by the inhibitors of PKA and KATP channels. But allicin had no effect on the expression of KATP subtypes Kir6.1 and SUR2B. These observations suggest that allicin exerts vasorelaxation effect through activation of PKA-KATP-signaling pathway.  相似文献   

17.
Ventricular ATP-sensitive potassium (KATP) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative KATP channel-associated proteins. We investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The KATP channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell KATP channel current density (activated by metabolic inhibition) was ∼40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia.  相似文献   

18.
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.  相似文献   

19.
The mechanism by which ATP-sensitive K+ (KATP) channels open in the presence of inhibitory concentrations of ATP remains unknown. Herein, using a four-state kinetic model, we found that the nucleotide diphosphate UDP directed cardiac KATP channels to operate within intraburst transitions. These transitions are not targeted by ATP, nor the structurally unrelated sulfonylurea glyburide, which inhibit channel opening by acting on interburst transitions. Therefore, the channel remained insensitive to ATP and glyburide in the presence of UDP. “Rundown” of channel activity decreased the efficacy with which UDP could direct and maintain the channel to operate within intraburst transitions. Under this condition, the channel was sensitive to inhibition by ATP and glyburide despite the presence of UDP. This behavior of the KATP channel could be accounted for by an allosteric model of ligand-channel interaction. Thus, the response of cardiac KATP channels towards inhibitory ligands is determined by the relative lifetime the channel spends in a ligand-sensitive versus -insensitive state. Interconversion between these two conformational states represents a novel basis for KATP channel opening in the presence of inhibitory concentrations of ATP in a cardiac cell.  相似文献   

20.
Co-expression of clones encoding Kir6.2, a K+ inward rectifier, and SUR1, a sulfonylurea receptor, reconstitutes elementary features of ATP-sensitive K+ (KATP) channels. However, the precise kinetic properties of Kir6.2/SUR1 clones remain unknown. Herein, intraburst kinetics of Kir6.2/SUR1 channel activity, heterologously co-expressed in COS cells, displayed mean closed times from 0.7 ± 0.1 to 0.4 ± 0.03 msec, and from 0.4 ± 0.1 to 2.0 ± 0.2 msec, and mean open times from 1.9 ± 0.4 to 4.5 ± 0.8 msec, and from 12.1 ± 2.4 to 5.0 ± 0.2 msec between −100 and −20 mV, and +20 to +80 mV, respectively. Burst duration for Kir6.2/SUR1 activity was 17.9 ± 1.8 msec with 5.6 ± 1.5 closings per burst. Burst kinetics of the Kir6.2/SUR1 activity could be fitted by a four-state kinetic model defining transitions between one open and three closed states with forward and backward rate constants of 1905 ± 77 and 322 ± 27 sec−1 for intraburst, 61.8 ± 6.6 and 23.9 ± 5.8 sec−1 for interburst, 12.4 ± 6.0 and 13.6 ± 2.9 sec−1 for intercluster events, respectively. Intraburst kinetic properties of Kir6.2/SUR1 clones were essentially indistinguishable from pancreatic or cardiac KATP channel phenotypes, indicating that intraburst kinetics per se were insufficient to classify recombinant Kir6.2/SUR1 amongst native KATP channels. Yet, burst kinetic behavior of Kir6.2/SUR1 although similar to pancreatic, was different from that of cardiac KATP channels. Thus, expression of Kir6.2/SUR1 proteins away from the pancreatic micro-environment, confers the burst kinetic identity of pancreatic, but not cardiac KATP channels. This study reports the kinetic properties of Kir6.2/SUR1 clones which could serve in the further characterization of novel KATP channel clones. Received: 12 March 1997/Revised: 5 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号