首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cyclins form complexes with cyclin-dependent kinases. By controlling activity of the enzymes, cyclins regulate progression through the cell cycle. A- and B-type cyclins were discovered due to their distinct appearance in S and G(2) phases and their rapid proteolytic destruction during mitosis. Transition from G(2) to mitosis is basically controlled by B-type cyclins. In mammals, two cyclin B proteins are well characterized, cyclin B1 and cyclin B2. Recently, a human cyclin B3 gene was described. In contrast to the expression pattern of other B-type cyclins, we find cyclin B3 mRNA expressed not only in S and G(2)/M cells but also in G(0) and G(1). Human cyclin B3 is expressed in different variants. We show that one isoform remains in the cytoplasm, whereas the other variant is translocated to the nucleus. Transport to the nucleus is dependent on three autonomous nonclassical nuclear localization signals that where previously not implicated in nuclear translocation. It had been shown that cyclin B3 coimmunoprecipitates with cdk2; but this complex does not exhibit any kinase activity. Furthermore, a degradation-resistant version of cyclin B3 can arrest cells in G(1) and G(2). Taken together with the finding that cyclin B3 mRNA is not only expressed in G(2)/M but is also detected in significant amounts in resting cells and in G(1) cells. This may suggest a dominant-negative function of human cyclin B3 in competition with activating cyclins in G(0) and the G(1) phase of the cell cycle.  相似文献   

5.
6.
7.
The transitions of the cell cycle are regulated by the cyclin dependent protein kinases(CDKs). The cyclins activate their respective CDKs and confer substrate recognitionproperties. We report the structure of phospho-CDK2/cyclin B and show that cyclin Bconfers M phase-like properties on CDK2, the kinase that is usually associated with S phase.Cyclin B produces an almost identical activated conformation of CDK2 as that produced bycyclin A. There are differences between cyclin A and cyclin B at the recruitment site, whichin cyclin A is used to recruit substrates containing an RXL motif. Because of sequencedifferences this site in cyclin B binds RXL motifs more weakly than in cyclin A. Despitesimilarity in kinase structures, phospho-CDK2/cyclin B phosphorylates substrates, such asnuclear lamin and a model peptide derived from p107, at sequences SPXX that differ fromthe canonical CDK2/cyclin A substrate recognition motif, SPXK. CDK2/cyclin Bphosphorylation at these non-canonical sites is not dependent on the presence of a RXLrecruitment motif. The p107 peptide contained two SP motifs each followed by a noncanonicalsequence of which only one site (Ser640) is phosphorylated by pCDK2/cyclin Awhile two sites are phosphorylated by pCDK2/cyclin B. The second site is too close to theRXL motif to allow the cyclin A recruitment site to be effective, as previous work has shownthat there must be at least 16 residues between the catalytic site serine and the RXL motif.Thus the cyclins A and B in addition to their role in promoting the activatory conformationalswitch in CDK2, also provide differential substrate specificity.  相似文献   

8.
9.
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.  相似文献   

10.
11.
12.
13.
Factors controlling cyclin B expression   总被引:6,自引:0,他引:6  
Ito M 《Plant molecular biology》2000,43(5-6):677-690
  相似文献   

14.
Arooz T  Yam CH  Siu WY  Lau A  Li KK  Poon RY 《Biochemistry》2000,39(31):9494-9501
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the human cell cycle. Here we have directly measured the concentrations of the G(1) and G(2) cyclins and their CDK partners in highly synchronized human cervical carcinoma cells (HeLa). To determine the exact concentrations of cyclins and CDKs in the cell extracts, we developed a relatively simple method that combined the use of (35)S-labeled standards produced in rabbit reticulocyte lysates and immunoblotting with specific antibodies. Using this approach, we formally demonstrated that CDC2 and CDK2 are in excess of their cyclin partners. We found that the concentrations of cyclin A2 and cyclin B1 (at their peak levels in the G(2) phase) were about 30-fold less than that of their partner CDC2. The peak levels of cyclin A2 and cyclin E1, at the G(2) phase and G(1) phase, respectively, were only about 8-fold less than that of their partner CDK2. These ratios are in good agreement with size fractionation analysis of the relative amount of monomeric and complexed forms of CDC2 and CDK2 in the cell. All the cyclin A2 and cyclin E1 are in complexes with CDC2 and CDK2, but there are some indications that a significant portion of cyclin B1 may not be in complex with CDC2. Furthermore, we also demonstrated that the concentration of the CDK inhibitor p21(CIP1/WAF1) induced after DNA damage is sufficient to overcome the cyclin-CDK2 complexes in MCF-7 cells. These direct quantitations formally confirmed the long-held presumption that CDKs are in excess of the cyclins in the cell. Moreover, similar approaches can be used to measure the concentration of any protein in cell-free extracts.  相似文献   

15.
16.
17.
Cell cycle transitions are governed by the timely expression of cyclins, the activating subunits of Cyclin-dependent kinases (Cdks), which are responsible for the inactivation of the pocket proteins. Overexpression of cyclins promotes cell proliferation and cancer. Therefore, it is important to understand the mechanisms by which cyclins regulate the expression of cell cycle promoting genes including subsequent cyclins. LIN-9 and the pocket proteins p107 and p130 are members of the DREAM complex that in G0 represses cell cycle genes. Interestingly, little is know about the regulation and function of LIN-9 after phosphorylation of p107,p130 by Cyclin D/Cdk4 disassembles the DREAM complex in early G1. In this report, we demonstrate that cyclin E1/Cdk3 phosphorylates LIN-9 on Thr-96. Mutating Thr-96 to alanine inhibits activation of cyclins A2 and B1 promoters, whereas a phosphomimetic Asp mutant strongly activates their promoters and triggers accelerated entry into G2/M phase in 293T cells. Taken together, our data suggest a novel role for cyclin E1 beyond G1/S and into S/G2 phase, most likely by inducing the expression of subsequent cyclins A2 and B1 through LIN-9.  相似文献   

18.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

19.
Cyclin E, a positive regulator of the cell cycle, controls the transition of cells from G(1) to S phase. Deregulation of the G(1)-S checkpoint contributes to uncontrolled cell division, a hallmark of cancer. We have reported previously that cyclin E is overexpressed in breast cancer and such overexpression is usually accompanied by the appearance of low molecular weight isoforms of cyclin E protein, which are not present in normal cells. Furthermore, we have shown that the expression of cyclin E low molecular weight isoforms can be used as a reliable prognostic marker for breast cancer to predict patient outcome. In this study we examined the role of cyclin E in directly activating cyclin-dependent kinase (CDK) 2. For this purpose, a series of N-terminal deleted forms of cyclin E corresponding to the low molecular weight forms detected only in cancer cells were translated in vitro and mixed with cell extracts. These tumor-specific N-terminal deleted forms of cyclin E are able to activate CDK2. Addition of cyclin E into both normal and tumor cell extracts was shown to increase the levels of CDK2 activity, along with an increase in the amount of phosphorylated CDK2. The increase in CDK2 activity was because of cyclin E binding to endogenous CDK2 in complex with endogenous cyclin E, cyclin A, or unbound CDK2. The increase in CDK2 phosphorylation was through a pathway involving cyclin-activating kinase, but addition of cyclin E to an extract containing unphosphorylated CDK2 can still lead to increase in CDK2 activity. Our data suggest that the ability of high levels of full-length and low molecular weight forms of cyclin E to activate CDK2 may be one mechanism that leads to the constitutive activation of cyclin E.CDK2 complexes leading to G(1)/S deregulation and tumor progression.  相似文献   

20.
Cell-cycle transitions in higher eukaryotes are regulated by different cyclin-dependent kinases (CDKs) and their activating cyclin subunits. Based on pioneering findings that a dominant-negative mutation of CDK1 blocks the cell cycle at G2-M phase, whereas dominant-negative CDK2 inhibits the transition into S phase, a model of cell-cycle control has emerged in which each transition is regulated by a specific subset of CDKs and cyclins. Recent work with gene-targeted mice has led to a revision of this model. We discuss cell-cycle control in light of overlapping and essential functions of the different CDKs and cyclins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号