首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BARC biosensor applied to the detection of biological warfare agents   总被引:10,自引:0,他引:10  
The Bead ARray Counter (BARC) is a multi-analyte biosensor that uses DNA hybridization, magnetic microbeads, and giant magnetoresistive (GMR) sensors to detect and identify biological warfare agents. The current prototype is a table-top instrument consisting of a microfabricated chip (solid substrate) with an array of GMR sensors, a chip carrier board with electronics for lock-in detection, a fluidics cell and cartridge, and an electromagnet. DNA probes are patterned onto the solid substrate chip directly above the GMR sensors, and sample analyte containing complementary DNA hybridizes with the probes on the surface. Labeled, micron-sized magnetic beads are then injected that specifically bind to the sample DNA. A magnetic field is applied, removing any beads that are not specifically bound to the surface. The beads remaining on the surface are detected by the GMR sensors, and the intensity and location of the signal indicate the concentration and identity of pathogens present in the sample. The current BARC chip contains a 64-element sensor array, however, with recent advances in magnetoresistive technology, chips with millions of these GMR sensors will soon be commercially available, allowing simultaneous detection of thousands of analytes. Because each GMR sensor is capable of detecting a single magnetic bead, in theory, the BARC biosensor should be able to detect the presence of a single analyte molecule.  相似文献   

2.
Paramagnetic beads have considerable potential as identification tags in biological analysis. For example, magnetic sensor-based arrays using the magnetic field generated by paramagnetic beads to test hybridization between interacting molecules have attracted widespread interest in recent years. However, application of paramagnetic beads as identification tags is still limited, since they do not permit differentiation between samples for multiplex analysis. Here, we report the application of a novel encoding of paramagnetic beads with peptide sequences. This strategy allows DNA samples labeled with peptide-encoded paramagnetic beads to be identified by the selective enzymatic cleavage of each peptide cross-linker.  相似文献   

3.
Two gold nanoparticles-based genomagnetic sensors designs for detection of DNA hybridization are described. Both assays are based on a magnetically induced direct electrochemical detection of gold tags on magnetic graphite-epoxy composite electrodes. The first design is a two strands assay format that consists of the hybridization between a capture DNA strand which is linked with paramagnetic beads and another DNA strand related to BRCA1 breast cancer gene used as a target which is coupled with streptavidin-gold nanoparticles. The second genomagnetic sensor design is a sandwich assay format with more application possibilities. A cystic fibrosis related DNA strand is used as a target and sandwiched between two complementary DNA probes: the first one linked with paramagnetic beads and a second one modified with gold nanoparticles via biotin-streptavidin complexation reactions. The electrochemical detection of gold nanoparticles by differential pulse voltammetry was performed in both cases. The developed genomagnetic sensors provide a reliable discrimination against noncomplementary DNA as well against one and three-base mismatches. Optimization parameters affecting the hybridization and analytical performance of the developed genosensors are shown for genomagnetic assays of DNA sequences related with the breast cancer and cystic fibrosis genes.  相似文献   

4.
5.
The detection of single molecules, e.g. in biology is possible by marking the interesting molecules with magnetic beads and detect the influence of the beads on giant magnetoresistance (GMR)/tunnel magnetoresistance (TMR)/spin valve (SV) sensors. The development of suitable multilayers has been studied experimentally as well as theoretically in order to optimize the sensor parameters. A finite difference (FD) method including the usually used contributions to the total energy [exchange, antiferromagnetically (af) coupling, anisotropy and magnetostatic] is used for the simulation with additional contributions to the local field according to the stray fields of the beads. In this work, we will show the results of micromagnetic calculations of the magnetization behavior of GMR/TMR sensors considering also the interaction between the domains in the magnetic layers of the sensor and the bead area. We can present first calculations where the bead particles (signal source) and the magnetic layers (sensor device) are considered as a whole magnetic ensemble.  相似文献   

6.
Magnetoresistive-based biosensors and biochips   总被引:5,自引:0,他引:5  
Over the past five years, magnetoelectronics has emerged as a promising new platform technology for biosensor and biochip development. The techniques are based on the detection of the magnetic fringe field of a magnetically labeled biomolecule interacting with a complementary biomolecule bound to a magnetic-field sensor. Magnetoresistive-based sensors, conventionally used as read heads in hard disk drives, have been used in combination with biologically functionalized magnetic labels to demonstrate the detection of molecular recognition. Real-world bio-applications are now being investigated, enabling tailored device design, based on sensor and label characteristics. This detection platform provides a robust, inexpensive sensing technique with high sensitivity and considerable scope for quantitative signal data, enabling magnetoresistive biochips to meet specific diagnostic needs that are not met by existing technologies.  相似文献   

7.
Detection of magnetically labeled biomolecules using micro-Hall biosensors is a promising method for monitoring biomolecular recognition processes. The measurement efficiency of standard systems is limited by the time taken for magnetic beads to reach the sensing area of the Hall devices. Here, micro-current lines were integrated with Hall effect structures to manipulate the position of magnetic beads via field gradients generated by localized currents flowing in the current lines. Beads were accumulated onto the sensor surface within seconds of passing currents through the current lines. Real-time detection of magnetic beads using current lines integrated with Hall biosensors was achieved. These results are promising in establishing Hall biosensor platforms as efficient and inexpensive means of monitoring biomolecular reactions for medical applications.  相似文献   

8.
Small magnetoresistive spin valve sensors (2 x 6 microm(2)) were used to detect the binding of single streptavidin functionalized 2 microm magnetic microspheres to a biotinylated sensor surface. The sensor signals, using 8 mA sense current, were in the order of 150-400 microV for a single microsphere depending on sensor sensitivity and the thickness of the passivation layer over the sensor surface. Sensor saturation signals were 1-2 mV representing an estimated 6-20 microspheres, with a noise level of approximately 10 microV. The detection of biomolecular recognition for the streptavidin-biotin model was shown using both single and differential sensor architectures. The signal data compares favourably with previously reported signals for high numbers of magnetic microspheres detected using larger multilayered giant magnetoresistance sensors. A wide range of applications is foreseen for this system in the development of biochips, high sensitivity biosensors and the detection of single molecules and single molecule interactions.  相似文献   

9.
The bead transfection method involves binding nucleic acids onto 3-microm-diameter paramagnetic beads, treating the beads with transfection reagent, and using them as scaffolds to direct transfection to individual cells or regions in a population. Typically, PCR products are used because they can be conveniently generated using biotinylated primers and can introduce site-directed mutations, without the need for cloning or plasmid purification. However, the method can be adapted to transfect plasmid DNA or RNA. The magnetic properties of the beads allows magnets to direct the loci of transfection in cell culture; magnetic arrays are built in cell culture chambers to allow multiple parallel transfections on the same microscope coverslip. The PCR reaction and transfection can be carried out in 1 d, and transfection results can be viewed in 24-48 h.  相似文献   

10.
An immunomagnetic method for the selective and quantitative detection of biological species by means of a magnetoresistive biosensor and superparamagnetic particles has been optimized. In order to achieve this, a giant magnetoresistive [Co (5.10nm)/Cu (2.47 nm)](20) multilayer structure has been chosen as the sensitive material, showing a magnetoresistance of 3.60% at 215 Oe and a sensitivity up to 0.19 Ω/Oe between 145 Oe and 350 Oe. The outward gold surface of the sensor is biofunctionalized with a Self-Assembled Monolayer (SAM). In addition, three different types of magnetic labels have been tested. 2 μm diameter magnetic carriers (7.68 pg ferrite/particle) have shown the best response and they have induced a shift in the magnetoresistive hysteresis loops up to 9% at 175 Oe.  相似文献   

11.
V Lund  R Schmid  D Rickwood    E Hornes 《Nucleic acids research》1988,16(22):10861-10880
Dynabeads are magnetic monosized beads with high stability, high uniformity, unique paramagnetic properties, low particle-particle interaction, and high dispersibility. Different reactive groups; hydroxyl, carboxyl and amino groups can be attached to the surface. Several methods for covalent attachment of DNA or oligonucleotides to the beads were investigated. Best coupling yields were obtained by carbodiimide-mediated end-attachment of 5'-phosphate and 5'-NH2 modified nucleic acids to respectively amino and carboxyl beads. The carboxyl beads showed a low degree of non-specific binding, while a better yield of end-attached nucleic acids was obtained using the amino beads. The DNA-beads worked efficiently in hybridization experiments, and the kinetics of hybridization approach those of solution hybridization.  相似文献   

12.
We present a comparative analysis of a magnetoresistive biosensor to standard fluorescent DNA detection. The biosensor consists of giant magnetoresistive (GMR) type Cu/Ni(80)Fe(20) multilayers in the second antiferromagnetic coupling maximum. Each of the 206 elements of the magnetoresistive biosensor is patterned into a spiral-shaped line that can cover the area of a typical DNA spot (70 microm diameter). The probe DNA is assembled on top of the sensor elements in different concentrations ranging from 16 pg/microl to 10 ng/microl. Complementary biotin-labeled analyte DNA is hybridized to the probe DNA at a concentration of 10 ng/microl. A number of different commercially available magnetic microspheres are investigated to determine the most appropriate markers. The experimental comparison shows that the relative sensitivity of the magnetoresistive biosensor is superior to the fluorescent detection at low probe DNA concentrations.  相似文献   

13.
This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I), tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controllable direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers, magnetic flux gradients of nablaB = 8 x 10(3) T m(-1) can be achieved over the dimensions of a single cell. This allows exertion of forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.  相似文献   

14.
Preparation and kinetic behavior of immobilized whole cell biocatalysts   总被引:1,自引:0,他引:1  
Linko P  Poutanen K  Weckstrom L 《Biochimie》1980,62(5-6):387-394
Actinoplanes missouriensis (for glucose isomerase), Kluyveromyces fragilis (for beta-galactosidase), and Saccharomyces cerevisiae (for invertase) cells were successfully entrapped within cellulose and cellulose di- and triacetate beads employing several carried solvent systems. Cellulose beads prepared using a melt of dimethylsulfoxide (DMSO) and N-ethylpyridinium chloride (NEPC), or cellulose diacetate using a mixture of acetone and DMSO as solvent, were found to be promising as carriers for the invertase system, cellulose triacetate beads with DMSO as solvent for yeast beta-galactosidase, and cellulose beads with a melt of DMSO and NEPC as solvent for glucose isomerase. The kinetic behavior of A. missouriensis glucose isomerase whole cell cellulose beads in a plug-flow column reactor was studied as an example system in greater detail.  相似文献   

15.
A practical and convenient method for discriminating between the presence and the absence of sialic acid in carbohydrate chains of glycoproteins was devised using paramagnetic beads and two lectins, Sambucus sieboldiana lectin (SSA) and Ricinus communis agglutinin (RCA120). The glycoproteins of transferrin or thyroglobulin were firstly captured to paramagnetic beads that were previously coated with corresponding antibody, and then the lectins of RCA120-biotin and SSA-FITC were bound to the glycoproteins on the paramagnetic beads. Finally, the fluorescence intensity of the beads was measured to determine the ratios of lectins RCA120-biotin/Cy5-streptavidin to SSA-FITC. The mixed lectins method showed bigger difference of the ratios between the presence and the absence of sialic acid, indicating higher discrimination efficiency than the ordinary non-mixed lectins method. Furthermore, statistical analysis by two-side t-test indicated that the mixed lectins method was more highly reliable than the ordinary non-mixed lectins method in discriminating between the presence and the absence of sialic acid. The reaction with the two lectins can be performed in a single tube and readily automated taking advantage of the use of paramagnetic beads.  相似文献   

16.
Microbeads that are both paramagnetic and fluorescently labeled are commercially available in colors spanning the visible spectrum. Although these commercial beads can be bright, polydispersity in both size and fluorescent intensity limit their use in quantitative assays. Very recently, more monodisperse beads have become available, but their large size and surface properties make them less than ideal for some bioassay applications. Here we describe methods to customize commercial nonfluorescent magnetic microparticles with fluorescent dyes and quantum dots (QDs) without affecting their magnetic or surface chemical properties. Fluorescent dyes and 3.3-nm diameter CdSe/ZnS QDs were sequestered within 0.8-micron diameter magnetic beads by swelling the polystyrene matrix of the bead in organic solvent, letting the chromophores partition, and then collapsing the matrix in polar solvents. Chromophore incorporation has been characterized using both UV-visible absorption spectroscopy and fluorescence microscopy, with an average of 3 x 10(8) rhodamine 6G molecules/bead and 6 x 10(4) QDs/bead. The modified beads are uniform in size and intensity, with optical properties comparable to currently available commercial beads. Immunoassay results obtained with our custom fluorescent magnetic microbeads are consistent with those obtained using conventional magnetic microbeads.  相似文献   

17.
The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (<10 cfu/ml) were present; however these beads also captured a range of other mycobacteria and so lacked capture specificity. Magnetic beads coated with monoclonal antibodies 6G11 and 15D10 (used as a 50:50 mix or as dually coated beads) also demonstrated improved MAP capture relative to the current PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay.  相似文献   

18.
A subtractive hybridization method is described that allows the generation of a subtractive gene library from small amounts of plant or other eukaryotic tissues. The method uses paramagnetic oligo-dT beads to capture poly-adenylated mRNA and to synthesize the complementary cDNA on a solid support. The use of magnetic beads facilitates the change of reaction buffers and the removal of primers and minimizes yield losses. Subtracted material obtained from this method can either be cloned directly or used to screen a specific library.  相似文献   

19.
The combination of magnetoresistive sensors and magnetic labeling of bioanalytes, which are selectively captured by their complementary antibody in the proximity of the sensor is a powerful method in order to attain truly quantitative immunological assays. In this paper we present a technical solution to exploit the existing spin valve technology to readout magnetic signals of bio-functionalized magnetic nanoparticles. The method is simple and reliable, and it is based on a discrete scan of lateral flow strips with a precise control of the contact force between sensor and sample. It is shown that the signal of the sensor is proportional to the local magnetization produced by the nanoparticles in a wide range of concentrations, and the sensitivity thresholds in both calibration samples and real immunorecognition assays of human chorionic gonadotropin hormone are well below the visual inspection limit (5.5 ng/ml). Furthermore the sample scanning approach and the reduced dimensions of the sensors provide unprecedented spatial resolution of the nanoparticle distribution across the supporting nitrocellulose strip, therefore enabling on-stick control references and multi-analyte capability.  相似文献   

20.
A novel type of magnetic-beads based magnetic biosensor is described for the detection of Yersinia pestis. Experiments were performed with the antigen fraction F1 of these bacteria. The magnetic sensor platform offers easy and reliable detection of Y. pestis by the use of magnetic beads for labelling and quantification in a single step due to their paramagnetic features. The system uses antiYPF1 antibodies as capture element on ABICAP columns as core element of the magnetic sensor. Several immobilization methods for antibodies on polyethylene were exploited. The established biosensor has a linear detection range of 25-300 ng/ml Y. pestis antigen F1 and a detection limit of 2.5 ng/ml in buffer and human blood serum. The presented sensor system is small, simple, portable and therefore usable as off-lab detection unit for medical and warfare analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号