首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The abnormal aggregation of the microtubule associated protein tau into paired helical filaments (PHFs) is one the hallmarks of Alzheimer's disease. The soluble protein is one of the longest natively unfolded proteins, lacking significant amounts of secondary structure over a sequence of 441 amino acids in the longest isoform. Furthermore, the unfolded character is consistent with some notable features of the protein like stability towards heat and acid treatment. It is still unclear how these characteristics support the physiological function of binding to and stabilization of microtubules. We review here some recent studies on how an unfolded protein such as tau can adopt beta-structure, which then leads to the highly ordered morphology of the PHFs. The core sequence for both microtubule binding and PHF formation is the microtubule binding domain containing three or four repeats. This region alone is sufficient for PHF formation and mostly unfolded in the soluble state. A search for sequence motifs within this region crucial for PHF building revealed two hexapeptides in the second and the third repeat. Some of the genetically linked cases of FTDP-17 show missense mutations in or adjacent to these hexapeptide motifs. Proteins containing the P301L and the DeltaK280 mutations exhibit accelerated aggregation. The importance of the two hexapeptides stems from their capacity to undergo a conformational change from a random coil to a beta sheet structure. The increase of beta sheet structure is a typical feature of an amyloidogenic protein and is the basis of other characteristics like a decreased sensitivity towards proteolytic degradation and Congo red binding. PHFs aggregated in vitro and in vivo contain beta-sheet structure, as judged by circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction.  相似文献   

2.
By using tryptophan scanning mutagenesis, we observed the kinetics and structure of the polymerization of tau into paired helical filaments (PHFs) independently of exogenous reporter dyes. The fluorescence exhibits pronounced blue shifts due to burial of the residue inside PHFs, depending on Trp position. The effect is greatest near the center of the repeat domain, showing that the packing is tightest near the beta-structure inducing hexapeptide motifs. The tryptophan response allows measurement of PHF stability made by different tau isoforms and mutants. Unexpectedly, the stability of PHFs is quite low (denaturation half-points approximately 1.0 m GdnHCl), implying that incipient aggregation should be reversible and that the observed high stability of Alzheimer PHFs is due to other factors. The stability increases with the number of repeats and with tau mutants promoting beta-structure, arguing for a gain of toxic function in frontotemporal dementias. Fluorescence resonance energy transfer (FRET) was used to analyze the distances of Tyr(310) to tryptophans in different positions. The degree of FRET in the soluble protein was position-dependent, with highest signals within the second and third repeats but low or no signals further away. In PHFs most mutants showed FRET, indicating that tight packing results from assembly of tau into PHFs.  相似文献   

3.
Tau is one of the two main proteins involved in the pathology of Alzheimer's disease via formation of beta-sheet rich intracellular aggregates named paired helical filaments (PHFs). Given that tau is a natively unfolded protein with no folded core (even upon binding to physiological partners such as microtubules), its structural analysis by high-resolution techniques has been difficult. In this study, employing solution small-angle X-ray scattering from the full length isoforms and from a variety of deletion and point mutants the conformation of tau in solution is structurally characterized. A recently developed ensemble optimization method was employed to generate pools of random models and to select ensembles of coexisting conformations, which fitted simultaneously the scattering data from the full length protein and deletion mutants. The analysis of the structural properties of these selected ensembles allowed us to extract information about residual structure in different domains of the native protein. The short deletion mutants containing the repeat domain (considered the core constituent of the PHFs) are significantly more extended than random coils, suggesting an extended conformation of the repeat domain. The longer tau constructs are comparable in size with the random coils, pointing to long-range contacts between the N- and C-termini compensating for the extension of the repeat domain. Moreover, most of the aggregation-promoting mutants did not show major differences in structure from their wild-type counterparts, indicating that their increased pathological effect is triggered only after an aggregation core has been formed.  相似文献   

4.
We have used X-ray fiber diffraction to probe the structure of fibers of tau and tau fragments. Fibers of fragments from the microtubule binding domain had a cross beta-structure that closely resembles that reported both for neurofibrillary tangles found in Alzheimer's disease brain and for fibrous lesions from other protein folding diseases. In contrast, fibers of full-length tau had a different, more complex structure. Despite major differences at the molecular level, all fiber types exhibited very similar morphology by electron microscopy. These results have a number of implications for understanding the etiology of Alzheimer's and other tauopathic diseases. The morphology of the peptide fibers suggests that the region in tau corresponding to the peptides plays a critical role in the nucleation of fiber assembly. The dramatically different structure of the full length tau fibers suggests that some region in tau has enough inherent structure to interfere with the formation of cross beta-fibers. Additionally, the similar appearance by electron microscopy of fibrils with varying molecular structure suggests that different molecular arrangements may exist in other samples of fibers formed from tau.  相似文献   

5.
In Alzheimer's disease and frontotemporal dementias the microtubule-associated protein tau forms intracellular paired helical filaments (PHFs). The filaments formed in vivo consist mainly of full-length molecules of the six different isoforms present in adult brain. The substructure of the PHF core is still elusive. Here we applied scanning transmission electron microscopy (STEM) and limited proteolysis to probe the mass distribution of PHFs and their surface exposure. Tau filaments assembled from the three repeat domain have a mass per length (MPL) of approximately 60 kDa/nm and filaments from full-length tau (htau40DeltaK280 mutant) have approximately 160 kDa/nm, compared with approximately 130 kDa/nm for PHFs from Alzheimer's brain. Polyanionic cofactors such as heparin accelerate assembly but are not incorporated into PHFs. Limited proteolysis combined with N-terminal sequencing and mass spectrometry of fragments reveals a protease-sensitive N-terminal half and semiresistant PHF core starting in the first repeat and reaching to the C-terminus of tau. Continued proteolysis leads to a fragment starting at the end of the first repeat and ending in the fourth repeat. PHFs from tau isoforms with four repeats revealed an additional cleavage site within the middle of the second repeat. Probing the PHFs with antibodies detecting epitopes either over longer stretches in the C-terminal half of tau or in the fourth repeat revealed that they grow in a polar manner. These data describe the physical parameters of the PHFs and enabled us to build a model of the molecular arrangement within the filamentous structures.  相似文献   

6.
Fourier transform infrared (FTIR) spectra have been obtained of human low-density lipoproteins (LDL) in H2O and 2H2O buffers. The absorption bands are assigned to vibrations of the lipid and apolipoprotein B-100 components. The analysis of second-derivative spectra allowed an assignment of individual protein bands to alpha-helical, random, coil or beta-structure and beta-turn conformations. Changes in the FTIR spectra after Cu2+-catalysed oxidation of the LDL particles indicate that the structure of apolipoprotein B-100 becomes less ordered, with some alterations of alpha-helical and beta-turn conformation. The main beta-structure absorption at 1620 cm-1 is unaffected by oxidation. Taking into account the resistance to oxidation and the slow H-2H exchange it is suggested that the beta-structure is hidden from external factors whereas other structures are mostly present on the surface of the LDL particle. Oxidation affects mainly the surface region of apolipoprotein B-100 and leads to a structural rearrangement which consequently changes the receptor specificity of the LDL.  相似文献   

7.
Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology.  相似文献   

8.
1. The blockage of the single sulfhydryl-group of bovine serum albumin does not alter the secondary structure, although the alpha-helical structure is destabilized since lower concentrations of guanidine and of urea unfold the protein. 2. What happens to the previously helical structure depends upon the reagent used to block the sulfhydryl-group. Bovine serum albumin derivatized with 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetate preferentially acquire the beta-structure in high concentrations of guanidine and urea, whereas iodoacetamide-derivatized bovine serum albumin acquires primarily the random coil structure. 3. Part of the helical structure is also lost in 5-6 mM sodium dodecyl sulfate; thionitrobenzoate-bovine serum albumin shows an increase in the random coil, whereas the two alkylated proteins display the increase both in beta-structure and random coil. 4. Carboxymethylation or carboxamidomethylation of fully reduced bovine serum albumin results in a drastic change in the secondary structure of the protein with a substantial decrease in alpha-helix and a corresponding increase in both beta-structure and random coil. These extensively alkylated proteins also display differences in denaturation profiles in solutions of guanidine and urea.  相似文献   

9.
The tau protein plays an important role in some neurodegenerative diseases including Alzheimer's disease (AD). Neurofibrillary tangles (NFTs), a biological marker for AD, are aggregates of bundles of paired helical filaments (PHFs). In general, the alpha-sheet structure favors aberrant protein aggregates. However, some reports have shown that the alpha-helix structure is capable of triggering the formation of aberrant tau protein aggregates and PHFs have a high alpha-helix content. In addition, the third repeat fragment in the four-repeat microtubule-binding domain of the tau protein (residues 306-336: VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ, according to the longest tau protein) adopts a helical structure in trifluoroethanol (TFE) and may be a self-assembly model in the tau protein. In the human brain, there is a very small quantity of copper, which performs an important function. In our study, by means of matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy, the binding properties of copper (II) ion to the R3 peptide derived from the third repeat fragment (residues 318-335: VTSKCGSLGNIHHKPGGG) have been investigated. The results show that copper ions bind to the R3 peptide. CD spectra, ultraviolet (UV)-visible absorption spectra, and MALDI-TOF MS show pH dependence and stoichiometry of Cu2+ binding. Furthermore, CD spectra and NMR spectroscopy elucidate the copper binding sites located in the R3 peptide. Finally, CD spectra reveal that the R3 peptide adopts a mixture structure of random structures, alpha-helices, and beta-turns in aqueous solutions at physiological pH. At pH 7.5, the addition of 0.25 mol eq of Cu2+ induces the conformational change from the mixture mentioned above to a monomeric helical structure, and a beta-sheet structure forms in the presence of 1 mol eq of Cu2+. As alpha-helix and beta-sheet structures are responsible for the formation of PHFs, it is hypothesized that Cu2+ is an inducer of self-assembly of the R3 peptide and makes the R3 peptide form a structure like PHF. Hence, it is postulated that Cu2+ plays an important role in the aggregation of the R3 peptide and tau protein and that copper (II) binding may be another possible involvement in AD.  相似文献   

10.
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism for the tau protein, it is still unclear how it is transformed from a normal structure in a neuron. To examine the linkage-dependent contribution of each repeat peptide (R1-R4) to filament formation of the three- or four-repeat microtubule-binding domain (MBD) in the tau protein, four two-repeat peptides (R12, R13, R23 and R34) and two three-repeat peptides (R123 and R234) were prepared, and their in vitro self-aggregation was investigated by thioflavin S fluorescence and circular dichroism measurements, and by electron microscopy in neutral buffer (pH 7.6). Comparison of these aggregation behaviors with previous results for single-repeat peptides and wild-type 3RMBD (R134) and 4RMBD (R1234) indicated that (a) the two-repeat R23, not the R2 or R3 single repeat, forms the core structure in self-aggregation of 4RMBD, whereas that of 3RMBD comprises the R3 single repeat, (b) co-existence of R1 and R4 repeats is necessary for the aggregation behavior inherent in 3RMBD and 4RMBD, whereas the R1 or R4 repeat alone functions as a repressor or modifier of the filament formation, (c) 4RMBD aggregation is accompanied by R1-driven transition from random and alpha-helix structures to a beta-sheet structure, whereas 3RMBD aggregation involves three-repeat R134-specific transition from a random structure to an alpha-helix structure without the participation of a beta-sheet structure, and (d) the peptides that include the R1 repeat form a long filament irrespective of the absence or presence of the R4 repeat, whereas those that include the R4 repeat, but not the R1 repeat, form a relatively short filament. To the best of our knowledge, a systematic study of the linkage-dependent contribution of each repeat peptide to the paired helical filament formation of tau MBD has not been carried out previously, and thus the present information is useful for understanding the essence of the filament formation of tau MBD.  相似文献   

11.
The abnormal aggregation of the microtubule-associated protein Tau into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer disease (AD). Tau in solution behaves as a natively unfolded or intrinsically disordered protein while its aggregation is based on the partial structural transition from random coil to beta-structure. Our aim is to understand in more detail the unfolded nature of Tau, to investigate the aggregation of Tau under different conditions and the molecular interactions of Tau in filaments. We show that soluble Tau remains natively unfolded even when its net charge is minimized, in contrast to other unfolded proteins. The CD signature of the random-coil character of Tau shows no major change over wide variations in charge (pH), ionic strength, solvent polarity, and denaturation. Thus there is no indication of a hydrophobicity-driven collapse, neither in the microtubule-binding repeat domain constructs nor in full-length Tau. This argues that the lack of hydrophobic residues but not the net charge accounts for unfolded nature of soluble Tau. The aggregation of the Tau repeat domain (that forms the core of PHFs) in the presence of nucleating polyanionic cofactors (heparin) is efficient in a range of buffers and pH values between approximately 5 and 10 but breaks down beyond that range, presumably because the pattern of charged interactions disappears. Similarly, elevated ionic strength attenuates aggregation, and the temperature dependence is bell-shaped with an optimum around 50 degrees C. Reporter dyes ThS and ANS record the aggregation process but sense different states (cross-beta-structure vs hydrophobic pockets) with different kinetics. Preformed PHFs are surprisingly labile and can be disrupted by denaturants at rather low concentration ( approximately 1.0 M GdnHCl), much less than required to denature globular proteins. Partial disaggregation of Tau filaments at extreme pH values monitored by CD and EM indicate the importance of salt bridges in filament formation. In contrast, Tau filaments are remarkably resistant to high temperature and high ionic strength. Overall, the stability of PHFs appears to depend mainly on directed salt bridges with contributions from hydrophobic interactions as well, consistent with a recent structural model of the PHF core derived from solid state NMR (Andronesi, O. C., von Bergen, M., Biernat, J., Seidel, K., Griesinger, C., Mandelkow, E., and Baldus, M. (2008) Characterization of Alzheimer's-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy.  相似文献   

12.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.  相似文献   

13.
We investigated whether a peptide fragment from the C-terminus of beta-amyloid protein precursor is associated with Alzheimer paired helical filaments (PHFs). Antiserum BR188, to the last 20 amino acids of the precursor, did not cross-react with tau protein, known to be in PHFs. It did react with all five pronase-treated PHF preparations assayed by ELISA and immunogold-labelled the same PHF fibrils that a PHF-specific tau antibody labelled. Neither antibody labelled beta/A4 fibrils. These results suggest that a fragment from the C-terminus of beta-amyloid precursor protein copurifies with pronase-treated PHFs and may play a role in their molecular pathogenesis.  相似文献   

14.
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylation of tau by several kinases (MARK, PKA, MAPK, GSK3) and its assembly into PHFs. The proline-directed kinases MAPK and GSK3 are known to phosphorylate most Ser-Pro or Thr-Pro motifs in the regions flanking the repeat domain of tau: they induce the reaction with several antibodies diagnostic of Alzheimer PHFs, but this type of phosphorylation has only a weak effect on tau-microtubule interactions and on PHF assembly. By contrast, MARK and PKA phosphorylate several sites within the repeats (notably the KXGS motifs including Ser262, Ser324, and Ser356, plus Ser320); in addition PKA phosphorylates some sites in the flanking domains, notably Ser214. This type of phosphorylation strongly reduces tau's affinity for microtubules, and at the same time inhibits tau's assembly into PHFs. Thus, contrary to expectations, the phosphorylation that detaches tau from microtubules does not prime it for PHF assembly, but rather inhibits it. Likewise, although the phosphorylation sites on Ser-Pro or Thr-Pro motifs are the most prominent ones on Alzheimer PHFs (by antibody labeling), they are only weakly inhibitory to PHF assembly. This implies that the hyperphosphorylation of tau in Alzheimer's disease is not directly responsible for the pathological aggregation into PHFs; on the contrary, phosphorylation protects tau against aggregation.  相似文献   

15.
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.  相似文献   

16.
Surface-decoration of microtubules by human tau   总被引:1,自引:0,他引:1  
Tau is a neuronal, microtubule-associated protein that stabilizes microtubules and promotes neurite outgrowth. Tau is largely unfolded in solution and presumably forms mostly random coil. Because of its hydrophilic nature and flexible structure, tau complexed to microtubules is largely invisible by standard electron microscopy methods. We applied a combination of high-resolution metal-shadowing and cryo-electron microscopy to study the interactions between tau and microtubules. We used recombinant tau variants with different domain compositions, (1) full length tau, (2) the repeat domain that mediates microtubule binding (K19), and (3) two GFP-tau fusion proteins that contain a globular marker (GFP) attached to full-length tau at either end. All of these constructs bind exclusively to the outside of microtubules. Most of the tau-related mass appears randomly distributed, creating a "halo" of low-density mass spread across the microtubule surface. Only a small fraction of tau creates a periodic signal at an 8 nm interval, centered on alpha-tubulin subunits. Our data suggest that tau retains most of its disordered structure even when bound to the microtubule surface. Hence, it binds along, as well as across protofilaments. Nevertheless, even minute concentrations of tau have a strong stabilizing effect and effectively scavenge unpolymerized tubulin.  相似文献   

17.
Alpha-helix structure in Alzheimer's disease aggregates of tau-protein   总被引:5,自引:0,他引:5  
The discovery of beta-sheet structure in Alzheimer's amyloid fibrils, and then in many other disease-related protein fibrils, has led to the widely believed view that beta-sheet formation is the general mechanism of aberrant protein aggregation leading to disease. This notion is further reinforced by recent findings, which indicate that normal proteins can be induced to form beta-sheet fibrils in vitro. Alzheimer's disease, a paradigm proteopathy, is accompanied by the formation of two distinct aggregates, amyloid fibrils and paired helical filaments (PHFs). Electron microscope images of PHFs show pairs of twisted ribbons with 80 nm periodicity. However, there is little information of the molecular structure of PHFs, as previous studies have failed to identify signs of regular structure. Using far-UV circular dichroism and Fourier-transformed infrared spectroscopy, we find that PHFs are comprised of alpha-helices. This is remarkable as tau-protein, PHF's primary constituent, has a high abundance of helix-breaking amino acids and is unstructured in solution. We also find that PHFs are very stable, as judged by their high melting temperature and resistance to protease digestion. PHFs are the first example of pathological aggregation associated to the formation of alpha-helix.  相似文献   

18.
Subunit structure of paired helical filaments in Alzheimer''s disease   总被引:24,自引:1,他引:23       下载免费PDF全文
The neurofibrillary tangles that occur in the brain in cases of senile dementia of the Alzheimer type contain a distinctive type of filament, the paired helical filament (PHF). We have developed a method for isolating the tangles postmortem in sufficient yield for structural study of PHFs by electron microscopy of negatively stained and shadowed preparations. This material shows the characteristic helical structure seen in sectioned embedded material. In addition, two striking fragmentation patterns are observed. (a) Some filaments show sharp transverse breaks at apparently random positions along the filament. (b) In a few PHFs one strand is missing for a variable length, whereas the other appears to maintain its structural integrity. The shadowed specimens show the PHF to be wound in a left-handed manner. These observations indicate that the PHF consists of subunits of very limited axial extent arranged along two left-handed helical strands. The visualization of the substructure within the PHFs is rather variable and a model building approach has therefore been adopted, which has allowed the main features seen in the images to be interpreted. The subunit appears to have at least two domains in a radial direction and an axial extent of less than 5 nm. The whole structure can best be described as a twisted ribbon and indeed alkali treatment does untwist PHFs to give flat ribbons. The nature of the proposed model makes it most unlikely that the PHF is formed by a simple collapse of normal cytoskeletal elements, such as neurofilaments.  相似文献   

19.
The amyloid beta-protein (1-42) is a major constituent of the abnormal extracellular amyloid plaque that characterizes the brains of victims of Alzheimer's disease. Two peptides, with sequences derived from the previously unexplored C-terminal region of the beta-protein, beta 26-33 (H2N-SNKGAIIG-CO2H) and beta 34-42 (H2N-LMVGGVVIA-CO2H), were synthesized and purified, and their solubility and conformational properties were analyzed. Peptide beta 26-33 was found to be freely soluble in water; however, peptide beta 34-42 was virtually insoluble in aqueous media, including 6 M guanidinium thiocyanate. The peptides formed assemblies having distinct fibrillar morphologies and different dimensions as observed by electron microscopy of negatively stained samples. X-ray diffraction revealed that the peptide conformation in the fibrils was cross-beta. A correlation between solubility and beta-structure formation was inferred from FTIR studies: beta 26-33, when dissolved in water, existed as a random coil, whereas the water-insoluble peptide beta 34-42 possessed antiparallel beta-sheet structure in the solid state. Solubilization of beta 34-42 in organic media resulted in the disappearance of beta-structure. These data suggest that the sequence 34-42, by virtue of its ability to form unusually stable beta-structure, is a major contributor to the insolubility of the beta-protein and may nucleate the formation of the fibrils that constitute amyloid plaque.  相似文献   

20.
The N-terminal tau 2-19 peptide undergoes gelation, syneresis, and aggregation over a period of years. These changes may be approximated on a shorter time scale by agitation and partial dehydration. The anomalously enhanced (229 nm) ultraviolet resonance Raman (UVRR) imide II band reveals a common structural feature for gels of nondehydrated tau 2-19 and collagen I and insoluble paired helical filaments (PHFs) and collagen I of weak hydrogen bonding at proline carbonyls. Anomalous UVRR enhancement of amide bands at 229 nm results from gel structure, as demonstrated by increased amide absorption at the red edge for tau 2-19 gel and implies the involvement of water in gel structure. In aged, dehydrated tau 2-19 gel, proline carbonyls lose their bonds to water and tyrosine becomes deprotonated, as demonstrated by UVRR spectroscopy. The Fourier transform infrared (FTIR) amide I band shows that antiparallel beta-sheet structure increases with syneresis in the tau 2-19 hydrogel. The comparison of FTIR results for PHFs with collagen I gel and polyproline demonstrates that the secondary structure of PHFs is polyproline II. One implication of this assignment is that the fibrillation of hydrophilic tau is thermodynamically driven by the entropy gained as hydrogen-bonded water is freed, as for collagen I. The FTIR results also show that peptide domains culled from a longer protein do not necessarily fold into identical secondary structures. A pathological, sequential mechanism of gelation, syneresis, and fibrillation for tau in AD is suggested and is supported by the observation of amorphous neurofibrillary tangle development and fibrillation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号