首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development.  相似文献   

2.
Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.  相似文献   

3.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

4.
Double-strand breaks (DSBs) can be repaired by homologous recombination (HR) in mammalian cells, often resulting in gene conversion. RAD51 functions with RAD52 and other proteins to effect strand exchange during HR, forming heteroduplex DNA (hDNA) that is resolved by mismatch repair to yield a gene conversion tract. In mammalian cells RAD51 and RAD52 overexpression increase the frequency of spontaneous HR, and one study indicated that overexpression of mouse RAD51 enhances DSB-induced HR in Chinese hamster ovary (CHO) cells. We tested the effects of transient and stable overexpression of human RAD51 and/or human RAD52 on DSB-induced HR in CHO cells and in human cells. DSBs were targeted to chromosomal recombination substrates with I-SceI nuclease. In all cases, excess RAD51 and/or RAD52 reduced DSB-induced HR, contrasting with prior studies. These distinct results may reflect differences in recombination substrate structures or different levels of overexpression. Excess RAD51/RAD52 did not increase conversion tract lengths, nor were product spectra otherwise altered, indicating that excess HR proteins can have dominant negative effects on HR initiation, but do not affect later steps such as hDNA formation, mismatch repair or the resolution of intermediates.  相似文献   

5.
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his35′ and his33::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his33::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.  相似文献   

6.
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9+ and rad9 mutants. Directed translocations were generated by selecting for His+ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-Δ5′ and trp1::his3-Δ3′::HOcs. Compared to RAD9+ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV- and X-ray-stimulated His+ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G2-M checkpoint by demonstrating that if rad9 mutants were arrested in G2 before irradiation, the numbers both of UV- and γ-ray-stimulated recombinants were reduced. The importance of G2 arrest in DNA damage-induced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.  相似文献   

7.
Bleomycins are small glycopeptide cancer chemotherapeutics that give rise to 3'-modified DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, DSBs are predominantly repaired by RAD52-dependent homologous recombination (HR) with some support by Yku70/Yku80 (KU)-dependent pathways. The main DSB repair function of KU is believed to be as part of the non-homologous end-joining (NHEJ) pathway, but KU also functions in a "chromosome healing" pathway that seals DSBs by de novo telomere addition. We report here that rad52Deltayku70Delta double mutants are considerably more bleomycin hypersensitive than rad52Deltalig4Delta cells that lack the NHEJ-specific DNA ligase 4. Moreover, the telomere-specific KU mutation yku80-135i also dramatically increases rad52Delta bleomycin hypersensitivity, almost to the level of rad52Deltayku80Delta. The results indicate that telomere-specific functions of KU play a more prominent role in the repair of bleomycin-induced damage than its NHEJ functions, which could have important clinical implications for bleomycin-based combination chemotherapies.  相似文献   

8.
Meiotic recombination in Saccharomyces cerevisiae is initiated by double-strand breaks (DSBs). We have developed a system to compare the properties of meiotic DSBs with those created by the site-specific HO endonuclease. HO endonuclease was expressed under the control of the meiotic-specific SPO13 promoter, creating a DSB at a single site on one of yeast's 16 chromosomes. In Rad(+) strains the times of appearance of the HO-induced DSBs and of subsequent recombinants are coincident with those induced by normal meiotic DSBs. Physical monitoring of DNA showed that SPO13::HO induced gene conversions both in Rad(+) and in rad50Δ cells that cannot initiate normal meiotic DSBs. We find that the RAD50 gene is important, but not essential, for recombination even after a DSB has been created in a meiotic cell. In rad50Δ cells, some DSBs are not repaired until a broken chromosome has been packaged into a spore and is subsequently germinated. This suggests that a broken chromosome does not signal an arrest of progression through meiosis. The recombination defect in rad50Δ diploids is not, however, meiotic specific, as mitotic rad50 diploids, experiencing an HO-induced DSB, exhibit similar departures from wild-type recombination.  相似文献   

9.
SMC1 coordinates DNA double-strand break repair pathways   总被引:5,自引:2,他引:3       下载免费PDF全文
The SMC1/SMC3 heterodimer acts in sister chromatid cohesion, and recent data indicate a function in DNA double-strand break repair (DSBR). Since this role of SMC proteins has remained largely elusive, we explored interactions between SMC1 and the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways for DSBR in Saccharomyces cerevisiae. Analysis of conditional single- and double mutants of smc1-2 with rad52Δ, rad54Δ, rad50Δ or dnl4Δ illustrates a significant contribution of SMC1 to the overall capacity of cells to repair DSBs. smc1 but not smc2 mutants show increased hypersensitivity of HR mutants to ionizing irradiation and to the DNA crosslinking agent cis-platin. Haploid, but not diploid smc1-2 mutants were severely affected in repairing multiple genomic DNA breaks, suggesting a selective role of SMC1 in sister chromatid recombination. smc1-2 mutants were also 15-fold less efficient and highly error-prone in plasmid end-joining through the NHEJ pathway. Strikingly, inactivation of RAD52 or RAD54 fully rescued efficiency and accuracy of NHEJ in the smc1 background. Therefore, we propose coordination of HR and NHEJ processes by Smc1p through interaction with the RAD52 pathway.  相似文献   

10.
Capture of linear fragments at a double-strand break in yeast   总被引:2,自引:0,他引:2  
Double-strand breaks (DSBs) are dangerous chromosomal lesions that must be efficiently repaired in order to avoid loss of genetic information or cell death. In all organisms studied to date, two different mechanisms are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Previous studies have shown that during DSB repair, non-homologous exogenous DNA (also termed ‘filler DNA’) can be incorporated at the site of a DSB. We have created a genetic system in the yeast Saccharomyces cerevisiae to study the mechanism of fragment capture. Our yeast strains carry recognition sites for the HO endonuclease at a unique chromosomal site, and plasmids in which a LEU2 gene is flanked by HO cut sites. Upon induction of the HO endonuclease, a linear extrachromosomal fragment is generated in each cell and its incorporation at the chromosomal DSB site can be genetically monitored. Our results show that linear fragments are captured at the repaired DSB site at frequencies of 10−6 to 10−4 per plated cell depending on strain background and specific end sequences. The mechanism of fragment capture depends on the NHEJ machinery, but only partially on the homologous recombination proteins. More than one fragment can be used during repair, by a mechanism that relies on the annealing of small complementary sequences. We present a model to explain the basis for fragment capture.  相似文献   

11.
Chromosomal repair was studied in stationary-phase Saccharomyces cerevisiae, including rad52/rad52 mutant strains deficient in repairing double-strand breaks (DSBs) by homologous recombination. Mutant strains suffered more chromosomal fragmentation than RAD52/RAD52 strains after treatments with cobalt-60 gamma irradiation or radiomimetic bleomycin, except after high bleomycin doses when chromosomes from rad52/rad52 strains contained fewer DSBs than chromosomes from RAD52/RAD52 strains. DNAs from both genotypes exhibited quick rejoining following gamma irradiation and sedimentation in isokinetic alkaline sucrose gradients, but only chromosomes from RAD52/RAD52 strains exhibited slower rejoining (10 min to 4 hr in growth medium). Chromosomal DSBs introduced by gamma irradiation and bleomycin were analyzed after pulsed-field gel electrophoresis. After equitoxic damage by both DNA-damaging agents, chromosomes in rad52/rad52 cells were reconstructed under nongrowth conditions [liquid holding (LH)]. Up to 100% of DSBs were eliminated and survival increased in RAD52/RAD52 and rad52/rad52 strains. After low doses, chromosomes were sometimes degraded and reconstructed during LH. Chromosomal reconstruction in rad52/rad52 strains was dose dependent after gamma irradiation, but greater after high, rather than low, bleomycin doses with or without LH. These results suggest that a threshold of DSBs is the requisite signal for DNA-damage-inducible repair, and that nonhomologous end-joining repair or another repair function is a dominant mechanism in S. cerevisiae when homologous recombination is impaired.  相似文献   

12.
To understand the mechanisms involved in homologous recombination, we have performed a search for Saccharomyces cerevisiae mutants unable to carry out plasmid-to-chromosome gene conversion. For this purpose, we have developed a colony color assay in which recombination is induced by the controlled delivery of double-strand breaks (DSBs). Recombination occurs between a chromosomal mutant ade2 allele and a second plasmid-borne ade2 allele where DSBs are introduced via the site-specific HO endonuclease. Besides isolating a number of new alleles in known rad genes, we identified a novel allele of the RFA1 gene, rfa1-44, which encodes the large subunit of the heterotrimeric yeast single-stranded DNA-binding protein RPA. Characterization of rfa1-44 revealed that it is, like members of the RAD52 epistasis group, sensitive to X rays, high doses of UV, and HO-induced DSBs. In addition, rfa1-44 shows a reduced ability to undergo sporulation and HO-induced gene conversion. The mutation was mapped to a single-base substitution resulting in an aspartate at amino acid residue 77 instead of glycine. Moreover, all radiation sensitivities and repair defects of rfa1-44 are suppressed by RAD52 in a dose-dependent manner, and one RAD52 mutant allele, rad52-34, displays nonallelic noncomplementation when crossed with rfa1-44. Presented is a model accounting for this genetic interaction in which Rfa1, in a complex with Rad52, serves to assemble other proteins of the recombination-repair machinery at the site of DSBs and other kinds of DNA damage. We believe that our findings and those of J. Smith and R. Rothstein (Mol. Cell. Biol. 15:1632-1641, 1995) are the first in vivo demonstrations of the involvement of a eukaryotic single-stranded binding protein in recombination and repair processes.  相似文献   

13.
Most mechanistic studies of repair of DNA double-strand breaks (DSBs) produced by in vivo expression of endonucleases have utilized enzymes that produce cohesive-ended DSBs such as HO, I-SceI and EcoRI. We have developed systems for expression of PvuII and EcoRV, nucleases that produce DSBs containing blunt ends, using a modified GAL1 promoter that has reduced basal activity. Expression of PvuII and EcoRV caused growth inhibition and strong cell killing in both haploid and diploid yeast cells. Surprisingly, there was little difference in sensitivities of wildtype cells and mutants defective in homologous recombination, nonhomologous end-joining (NHEJ), or both pathways. Physical analysis using standard and pulsed field gel electrophoresis demonstrated time-dependent breakage of chromosomal DNA within cells. Although ionizing radiation-induced DSBs were largely repaired within 4 h, no repair of PvuII-induced breaks could be detected in diploid cells, even after arrest in G2/M. Rare survivors of PvuII expression had an increased frequency of chromosome XII deletions, an indication that a fraction of the induced DSBs could be repaired by an error-prone process. These results indicate that, unlike DSBs with complementary single-stranded DNA overhangs, blunt-ended DSBs in yeast chromosomes are poor substrates for repair by either NHEJ or recombination.  相似文献   

14.
Summary Disruption/deletion mutations in genes of the RAD52 epistasis group of Saccharomyces cerevisiae were examined for their effects on recombination between single-and double-stranded circular DNA substrates and chromosomal genes in a transformation assay. In rad50 mutants there was a small reduction in recombination with single-stranded DNA at the leu2-3, 112 allele; in addition there was an almost complete elimination of recombination at trpl-1 for both single- and double-stranded DNA. Reintroduction of a wild-type RAD50 gene on a replicating plasmid carrying CEN4 restored recombinational competence at trpl-1, indicating that rad50 is defective in gene replacement of this allele. In rad52 mutants a reduction of 30%-50% in recombination involving either single- or double-stranded circular DNA was observed in each experiment when compared to the wild type. This reduction of recombination in rad52 mutants was similar for recombination at the ura352 mutant locus where only integration events have been observed, and at the trpl-1 mutant locus, where recombination occurs predominantly by gene replacement. Neither the rad54 nor the rad57 mutations had a significant effect on recombination with single- or double-stranded DNA substrates.  相似文献   

15.
Mutations in the REM1 gene of Saccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells ( GOLIN and ESPOSITO 1977). These effects have not been observed in meiosis. We have examined the interactions of rem1 mutations with rad6-1, rad50 -1, rad52-1 or spo11 -1 mutations in order to understand the basis of the rem1 hyper-rec phenotype. The rad mutations have pleiotropic phenotypes; spo11 is only defective in sporulation and meiosis. The RAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in the RAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations in RAD50 , RAD52 or SPO11 eliminate meiotic recombination, and mutations in RAD6 prevent spore formation. Evidence for the involvement of RAD6 in meiotic recombination is less clear. Mutations in all three RAD genes confer sensitivity to X rays; the RAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred by rem1 mutations, double mutants were constructed. Double mutants of rem1 spo11 were viable and demonstrated rem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing the rem1 phenotype. The rem1 rad6 double mutant was also viable and had rem1 levels of mitotic recombination. Neither rem1 rad50 nor rem1 rad52 double mutants were viable. This suggests that rem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involving RAD50 and RAD52.  相似文献   

16.
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.  相似文献   

17.
The RAD52 gene product of the yeast Saccharomyces cerevisiae is required for most spontaneous recombination and almost all double-strand break (DSB) repair. In contrast to recombination elsewhere in the genome, recombination in the ribosomal DNA (rDNA) array is RAD52 independent. To determine the fate of a DSB in the rDNA gene array, a cut site for the HO endonuclease was inserted into the rDNA in a strain containing an inducible HO gene. DSBs were efficiently repaired at this site, even in the absence of the RAD52 gene product. Efficient RAD52-independent DSB repair was also observed at another tandem gene array, CUP1, consisting of 18 repeat units. However, in a smaller CUP1 array, consisting of only three units, most DSBs (ca. 80%) were not repaired and resulted in cell death. All RAD52-independent DSB repair events examined resulted in the loss of one or more repeat units. We propose a model for DSB repair in repeated sequences involving the generation of single-stranded tails followed by reannealing.  相似文献   

18.
The RAD52 gene of Saccharomyces cerevisiae is essential for repair of DNA double-strand breaks (DSBs) by homologous recombination. Inactivation of this gene confers hypersensitivity to DSB-inducing agents and defects in most forms of recombination. The rad22+ gene in Schizosaccharomyces pombe (here referred to as rad22A+) has been characterized as a homolog of RAD52 in fission yeast. Here, we report the identification of a second RAD52 homolog in Schizosaccharomyces pombe, called rad22B+. The amino acid sequences of Rad22A and Rad22B show significant conservation (38% identity). Deletion mutants of respectively, rad22A and rad22B, show different phenotypes with respect to sensitivity to X-rays and the ability to perform homologous recombination as measured by the integration of plasmid DNA. Inactivation of rad22A+ leads to a severe sensitivity to X-rays and a strong decrease in recombination (13-fold), while the rad22B mutation does not result in a decrease in homologous recombination or a change in radiation sensitivity. In a rad22A-rad22B double mutant the radiation sensitivity is further enhanced in comparison with the rad22A single mutant. Overexpression of the rad22B+ gene results in partial suppression of the DNA repair defects of the rad22A mutant strain. Meiotic recombination and spore viability are only slightly affected in either single mutant, but outgrowth of viable spores is almost 31-fold reduced in the rad22A-rad22B double mutant. The results obtained imply a crucial role for rad22A+ in repair and recombination in vegetative cells just like RAD52 in S. cerevisiae. The rad22B+ gene presumably has an auxiliary role in the repair of DSBs. The drastic reduced spore viability in the double mutant suggests that meiosis in S. pombe is dependent on the presence of either rad22A+ or rad22B+.  相似文献   

19.
Homothallic Saccharomyces cerevisiae strains switch their mating-type in a specific gene conversion event induced by a DNA double strand break made by the HO endonuclease. The RAD52 group genes control recombinational repair of DNA double strand breaks, and we examined their role in native homothallic mating-type switching. Surprisingly, we found that the Rad54 protein was important but not essential for mating-type switching under natural conditions. As an upper limit, we estimate that 29% of the rad54 spore clones can successfully switch their mating-type. The RAD55 and RAD57 gene products were even less important, but their presence increased the efficiency of the process. In contrast, the RAD51 and RAD52 genes are essential for homothallic mating-type switching. We propose that mating-type switching in RAD54 mutants occurs stochastically with a low probability, possibly reflecting different states of chromosomal structure.  相似文献   

20.
Checkpoints are cellular surveillance and signaling pathways that regulate responses to DNA damage and perturbations of DNA replication. Here we show that high levels of sumoylated Rad52 are present in the mec1 sml1 and rad53 sml1 checkpoint mutants exposed to DNA-damaging agents such as methyl methanesulfonate (MMS) or the DNA replication inhibitor hydroxyurea (HU). The kinase-defective mutant rad53-K227A also showed high levels of Rad52 sumoylation. Elevated levels of Rad52 sumoylation occur in checkpoint mutants proceeding S phase being exposed DNA-damaging agent. Interestingly, chromatin immunoprecipitation (ChIP) on chip analyses revealed non-canonical chromosomal localization of Rad52 in the HU-treated rad53-K227A cells arrested in early S phase: Rad52 localization at dormant and early DNA replication origins. However, such unusual localization was not dependent on the sumoylation of Rad52. In addition, we also found that Rad52 could be highly sumoylated in the absence of Rad51. Double mutation of RAD51 and RAD53 exhibited the similar levels of Rad52 sumoylation to RAD53 single mutation. The significance and regulation mechanism of Rad52 sumoylation by checkpoint pathways will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号