首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Salt is one of the main environmental factors limiting plant growth and a better understanding of mechanisms of salt stress would aid efforts to bolster plant salt tolerance. MicroRNAs are well known for their important regulatory roles in response to abiotic stress in plants. In this study, high-throughput sequencing was employed to identify miRNAs in Populus tomentosa plantlets treated or not with salt (200 mM for 10 h). We found 141 conserved miRNAs belonging to 31 families, 29 non-conserved but previously-known miRNAs belonging to 26 families, and 17 novel miRNAs. Under salt stress, 19 miRNAs belonging to seven conserved miRNA families were significantly downregulated, and two miRNAs belonging to two conserved miRNA families were upregulated. Of seven non-conserved miRNAs with significantly altered expression, five were downregulated and two were upregulated. Furthermore, eight miRNAs were validated by qRT-PCR and their dynamic differential expressions were analyzed. In addition, 269 target genes of identified miRNAs were predicted and categorized by function. These results provide new insights into salt-responsive miRNAs in Populus.  相似文献   

5.
6.
7.
Plant microRNAs (miRNAs) regulate gene expression mainly by guiding cleavage of target mRNAs. In this study, a degradome library constructed from different soybean (Glycine max (L.) Merr.) tissues was deep-sequenced. 428 potential targets of small interfering RNAs and 25 novel miRNA families were identified. A total of 211 potential miRNA targets, including 174 conserved miRNA targets and 37 soybean-specific miRNA targets, were identified. Among them, 121 targets were first discovered in soybean. The signature distribution of soybean primary miRNAs (pri-miRNAs) showed that most pri-miRNAs had the characteristic pattern of Dicer processing. The biogenesis of TAS3 small interfering RNAs (siRNAs) was conserved in soybean, and nine Auxin Response Factors were identified as TAS3 siRNA targets. Twenty-three miRNA targets produced secondary small interfering RNAs (siRNAs) in soybean. These targets were guided by five miRNAs: gma-miR393, gma-miR1508, gma-miR1510, gma-miR1514, and novel-11. Multiple targets of these secondary siRNAs were detected. These 23 miRNA targets may be the putative novel TAS genes in soybean. Global identification of miRNA targets and potential novel TAS genes will contribute to research on the functions of miRNAs in soybean.  相似文献   

8.
Chen L  Ren Y  Zhang Y  Xu J  Sun F  Zhang Z  Wang Y 《Gene》2012,504(2):160-165
Plant microRNAs have a vital role in various abiotic stress responses by regulating gene expression. Heat stress is one of the most severe abiotic stresses, and affects plant growth and development, even leading to death. To identify heat-responsive miRNAs at the genome-wide level in Populus, Solexa sequencing was employed to sequence two libraries from Populus tomentosa, treated and untreated by heat stress. Sequence analysis identified 134 conserved miRNAs belonging to 30 miRNA families, and 16 novel miRNAs belonging to 14 families. Among these miRNAs, 52 miRNAs from 15 families were responsive to heat stress and most of them were down-regulated. qRT-PCR analysis confirmed that the conserved and novel miRNAs were expressed in P. tomentosa, and revealed similar expression trends to the Solexa sequencing results obtained under heat stress. One hundred and nine targets of the novel miRNAs were predicted. This study opens up a new avenue for understanding the regulatory mechanisms of miRNAs involvement in the heat stress response of trees.  相似文献   

9.
10.

Sorghum is largely grown for food, fodder and for biofuel production in semi-arid regions where the drought or high temperature or their combination co-occur. Plant microRNAs (miRNAs) are integral to the gene regulatory networks that control almost all biological processes including adaptation to stress conditions. Thus far, plant miRNA profiles under separate drought or heat stresses have been reported but not under combined drought and heat. In this study, we report miRNA profiles in leaves of sorghum exposed to individual drought or heat or their combination. Approximately 29 conserved miRNA families represented by 80 individual miRNAs, 26 families represented by 47 members of less conserved or sorghum-specific miRNA families as well as 8 novel miRNA families have been identified. Of these, 25 miRNAs were found to be differentially regulated in response to stress treatments. The comparative profiling revealed that the miRNA regulation was stronger under heat or combination of heat and drought compared to the drought alone. Furthermore, using degradome sequencing, 48 genes were confirmed as targets for the miRNAs in sorghum. Overall, this study provides a framework for understanding of the miRNA-guided gene regulations under combined stresses.

  相似文献   

11.
12.
13.
14.
15.
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre‐miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat‐specific miRNAs that were generated from 87 and 1088 pre‐miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub‐classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the results indicate that some miRNAs are involved in the compatible wheat‐Pst susceptibility interaction. Importantly, tae‐miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion‐binding protein, also exhibited upregulated expression but a divergent expression trend. PC‐3P‐7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat‐Pst susceptibility interaction.  相似文献   

16.
17.
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most consistently damaging diseases of common wheat worldwide and greatly affects crop productivity. Recently, several plant microRNAs (miRNAs) have been reported as gene expression regulators related to various adverse environments. However, up to now, less is known on the roles of miRNAs in powdery mildew infection response of wheat. In this study, miRNA expression patterns were investigated for identifying Bgt‐responsive miRNAs in wheat leaves using a plant miRNA microarray platform. A total of 79 miRNAs from 24 families were detected in wheat leaves. Among those, seven miRNAs were further validated to be involved in wheat powdery mildew response and two of them have never been reported. In addition, their target expression profiles showed a negative correlation with that of the seven miRNAs in mock‐ and Bgt‐infected samples furtherly proved, which in turn as the robust evidence, that those seven powdery mildew‐responsive miRNAs are highly reliable. These findings could extend the current view about miRNAs as ubiquitous regulators under stress conditions.  相似文献   

18.
Chen L  Ren Y  Zhang Y  Xu J  Zhang Z  Wang Y 《Planta》2012,235(5):873-883
MicroRNAs (miRNAs) are small RNAs, generally of 20–23 nt, that down-regulate target gene expression during development, differentiation, growth, and metabolism. In Populus, extensive studies of miRNAs involved in cold, heat, dehydration, salinity, and mechanical stresses have been performed; however, there are few reports profiling the miRNA expression patterns during pathogen stress. We obtained almost 38 million raw reads through Solexa sequencing of two libraries from Populus inoculated and uninoculated with canker disease pathogen. Sequence analyses identified 74 conserved miRNA sequences belonging to 37 miRNA families from 154 loci in the Populus genome and 27 novel miRNA sequences from 35 loci, including their complementary miRNA* strands. Intriguingly, the miRNA* of three conserved miRNAs were more abundant than their corresponding miRNAs. The overall expression levels of conserved miRNAs increased when subjected to pathogen stress, and expression levels of 33 miRNA sequences markedly changed. The expression trends determined by sequencing and by qRT-PCR were similar. Finally, nine target genes for three conserved miRNAs and 63 target genes for novel miRNAs were predicted using computational analysis, and their functions were annotated. Deep sequencing provides an opportunity to identify pathogen-regulated miRNAs in trees, which will help in understanding the regulatory mechanisms of plant defense responses during pathogen infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号