首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeaxanthin (Z) has a role in the dissipation of excess excitation energy by participating in non‐photochemical quenching (NPQ) and is essential in protecting the chloroplast from photooxidative damage. To investigate the physiological effects and functional mechanism of constitutive accumulation of Z in the tomato at salt stress‐induced photoinhibition and photooxidation, antisense‐mediated suppression of zeaxanthin epoxidase transgenic plants and the wild‐type (WT) tomato were used. The ratio of Z/(V + A + Z) and (Z + 0.5A)/(V + A + Z) in antisense transgenic plants were maintained at a higher level than in WT plants under salt stress, but the value of NPQ in WT and transgenic plants was not significantly different under salt stress. However, the maximal photochemical efficiency of PSII (Fv/Fm) and the net photosynthetic rate (Pn) in transgenic plants decreased more slowly under salt stress. Furthermore, transgenic plants showed lower level of hydrogen peroxide (H2O2), superoxide anion radical (O2??) and ion leakage, lower malondialdehyde content. Compared with WT, the content of D1 protein decreased slightly in transgenic plants under salt stress. Our results suggested that the constitutive accumulation of Z in transgenic tomatoes can alleviate salt stress‐induced photoinhibition because of the antioxidant role of Z in the scavenging quenching of singlet oxygen and/or free radicals in the lipid phase of the membrane.  相似文献   

2.
RNA gel hybridization showed that the expression of monodehydroascorbate reductase (MDHAR) in the wild type (WT) tomato was decreased firstly and then increased under salt- and polyethylene glycol (PEG)-induced osmotic stress, and the maximum level was observed after treatment for 12 h. WT, sense transgenic and antisense transgenic tomato plants were used to analyze the antioxidative ability to cope with osmotic stresses. After salt stress, the fresh mass (FM) and height of sense transgenic lines were greater than those of antisense lines and WT plants. Under salt and PEG treatments, sense transgenic plants showed a lower level of hydrogen peroxide (H2O2) and malondialdehyde (MDA), a higher net photosynthetic rate (P N), and the maximal photochemical efficiency of PSII (Fv/Fm) compared with WT and antisense transgenic plants. Moreover, sense lines maintained higher ascorbate peroxidase (APX) activity than WT and antisense plants under salt- and PEG-induced osmotic stress. These results indicate that chloroplastic MDHAR plays an important role in alleviating photoinhibition of PSII by elevating ascorbate (AsA) level under salt- and PEG-induced osmotic stress.  相似文献   

3.
5‐Aminolevulinic acid (5‐ALA) has been suggested for improving plant salt tolerance via exogenous application. In this study, we used a transgenic canola (Brassica napus), which contained a constituted gene YHem1 and biosynthesized more 5‐ALA, to study salt stress responses. In a long‐term pot experiment, the transgenic plants produced higher yield under 200 mmol L?1 NaCl treatment than the wild type (WT). In a short‐term experiment, the YHem1 transformation accelerated endogenous 5‐ALA metabolism, leading to more chlorophyll accumulation, higher diurnal photosynthetic rates and upregulated expression of the gene encoding Rubisco small subunit. Furthermore, the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, were significantly higher in the transgenic plants than the WT, while the levels of O2·? and malondialdehyde were lower than the latter. Additionally, the Na+ content was higher in the transgenic leaves than that in the WT under salinity, but K+ and Cl? were significantly lower. The levels of N, P, Cu, and S in the transgenic plants were also significantly lower than those in the WT, but the Fe content was significantly improved. As the leaf Fe content was decreased by salinity, it was suggested that the stronger salt tolerance of the transgenic plants was related to the higher Fe acquisition. Lastly, YHem1 transformation improved the leaf proline content, but salinity decreased rather than increased it. The content of free amino acids and soluble sugars was similarly decreased as salinity increased, but it was higher in the transgenic plants than that in the WT.  相似文献   

4.
5.
H+-ATPase subunit c (VHA-c) is involved in the adaptation to environmental stresses, including salt, drought, and heavy metals. However, it remains unclear whether VHA-c can induce a physiological response related to stress tolerance. To investigate this possibility, we generated transgenic tobacco lines overexpressing a V-ATPase subunit c (LbVHA-c1) gene from Limonium bicolor (Bunge) Kuntze. Compared with wild-type (WT) tobacco, superoxide dismutase (SOD) and peroxidase (POD) activities in the transgenic plants were significantly enhanced under salt stress conditions. The level of malondialdehyde (MDA) in the transgenic plants was significantly lower than that in WT plants grown under salt stress conditions. Moreover, the transgenic plants displayed obviously better growth than the WT plants under salt stress. These results suggest that LbVHA-c1 may confer stress tolerance through enhancing POD and SOD activities, and by protecting membranes from damage by decreasing lipid peroxidation under salt stress.  相似文献   

6.
7.
8.

Background

Calcium-binding proteins that contain EF-hand motifs have been reported to play important roles in transduction of signals associated with biotic and abiotic stresses. To functionally characterize gens of EF-hand family in response to abiotic stress, an MtCaMP1 gene belonging to EF-hand family from legume model plant Medicago truncatula was isolated and its function in response to drought and salt stress was investigated by expressing MtCaMP1 in Arabidopsis.

Methodology/Principal Findings

Transgenic Arabidopsis seedlings expressing MtCaMP1exhibited higher survival rate than wild-type seedlings under drought and salt stress, suggesting that expression of MtCaMP1 confers tolerance of Arabidopsis to drought and salt stress. The transgenic plants accumulated greater amounts of Pro due to up-regulation of P5CS1 and down-regulation of ProDH than wild-type plants under drought stress. There was a less accumulation of Na+ in the transgenic plants than in WT plants due to reduced up-regulation of AtHKT1 and enhanced regulation of AtNHX1 in the transgenic plants compared to WT plants under salt stress. There was a reduced accumulation of H2O2 and malondialdehyde in the transgenic plants than in WT plants under both drought and salt stress.

Conclusions/Significance

The expression of MtCaMP1 in Arabidopsis enhanced tolerance of the transgenic plants to drought and salt stress by effective osmo-regulation due to greater accumulation of Pro and by minimizing toxic Na+ accumulation, respectively. The enhanced accumulation of Pro and reduced accumulation of Na+ under drought and salt stress would protect plants from water default and Na+ toxicity, and alleviate the associated oxidative stress. These findings demonstrate that MtCaMP1 encodes a stress-responsive EF-hand protein that plays a regulatory role in response of plants to drought and salt stress.  相似文献   

9.
Plant glutathione S-transferases (GSTs) are involved in protecting plants against both diverse biotic and abiotic stresses. In the present study, a novel GST gene (LbGST1) was cloned from Limonium bicolor (Bunge) Kuntze (Plumbaginaceae). To characterize its function in salt tolerance, tobacco lines transformed with LbGST1 were generated. Compared with wild-type (WT) tobacco, transgenic plants overexpressing LbGST1 exhibited both GST and glutathione peroxidase activities. Moreover, superoxide dismutase, peroxidase (POD), and catalase activities in transgenic plants were significantly higher than those in WT plants, particularly when grown under conditions of salt stress. Similarly, levels of proline in transgenic plants were also higher than those in WT plants grown under NaCl stress conditions. Whereas, Malondialdehyde contents in transgenic plants were lower than those in WT plants under NaCl conditions. Furthermore, Na+ content in transgenic plants was lower than that in WT plants under these stress conditions. Subcellular localization analysis revealed that the LbGST1 protein was localized in the nucleus. These results suggested that overexpression of LbGST1 gene can affect many physiological processes associated with plant salt tolerance. Therefore, we hypothesize that LbGST1 gene can mediate many physiological pathways that enhance stress resistance in plants.  相似文献   

10.
11.
Over-expression of chloroplastic glycerol-3-phosphate acyltransferase gene (LeGPAT) increased unsaturated fatty acid contents in phosphatidylglycerol (PG) of thylakoid membrane in tomato. The effect of this increase on the xanthophyll cycle and chloroplast antioxidant enzymes was examined by comparing wild type (WT) tomato with the transgenic (TG) lines at chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1). Net photosynthetic rate and the maximal photochemical efficiency of photosystem (PS) 2 (Fv/Fm) in TG plants decreased more slowly during chilling stress and Fv/Fm recovered faster than that in WT plants under optimal conditions. The oxidizable P700 in both WT and TG plants decreased during chilling stress under low irradiance, but recovered faster in TG plants than in the WT ones. During chilling stress, non-photochemical quenching (NPQ) and the de-epoxidized ratio of xanthophyll cycle in WT plants were lower than those of TG tomatoes. The higher activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in TG plants resulted in the reduction of O2 −· and H2O2 contents during chilling stress. Hence the increase in content of unsaturated fatty acids in PG by the over-expression of LeGPAT could alleviate photoinhibition of PS2 and PS1 by improving the de-epoxidized ratio of xanthophyll cycle and activities of SOD and APX in chloroplast.  相似文献   

12.
A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR–green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense‐ and antisense‐ LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild‐type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H2O2), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (Pn), higher maximal photochemical efficiency of PSII (Fv/Fm) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H2O2 level, higher ascorbate peroxidase (APX) activity, greater Pn and Fv/Fm under methyl viologen (MV)‐mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.  相似文献   

13.
Drought stress enhances the production of superoxide radical (O2 ._) and superoxide dismutase catalyses dismutation of it to H2O2 and O2, and hence provides a first line of defense against oxidative stress. Over-expression of a cytosolic copper-zinc superoxide dismutase, cloned from Potentilla atrosanguinea (PaSOD), in potato (Solanum tuberosum ssp. tuberosum L. cv. Kufri Sutlej) resulted in enhanced net photosynthetic rates (PN) and stomatal conductance (gs) compared to that in the wild type (WT) plants under control (irrigated) as well as drought stress conditions. Drought stress declined leaf water potential, PN, gs, photosystem II activity, and chlorophyll content, but increased proline and O2 ._ content more in WT than transgenic potato plants (SS5). The significantly higher SOD activity in SS5 coincided well with lower O2 ._ content suggesting its role in maintaining higher gs and PN in transgenic potato plants.  相似文献   

14.
Sun XL  Yang S  Wang LY  Zhang QY  Zhao SJ  Meng QW 《Plant cell reports》2011,30(10):1939-1947
Over-expression of chloroplast glycerol-3-phosphate acyltransferase gene (LeGPAT) in tomato increased cis-unsaturated fatty acid content in phosphatidylglycerol (PG) of the thylakoid membrane. Under chilling stress, the oxygen evolving activity, the maximal photochemical efficiency of PSII (F v/F m), and superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities decreased less in sense lines than in antisense lines compared to wild-type (WT) plants. Consistently, the relative electric conductivity, \textO2 . - {\text{O}}_{2} ^{{. - }} and H2O2 contents in sense lines were lower than those of WT and antisense lines. The antisense lines with low level of unsaturated fatty acids in PG were extremely susceptible to photoinhibition of PSII and had a significant reduction in the D1 protein content of PSII reaction center under chilling stress. However, in the presence of streptomycin (SM), the degradation of D1 protein was faster in sense lines than in WT and antisense plants. These results suggested that, under chilling stress conditions, increasing cis-unsaturated fatty acids in PG through over-expression of LeGPAT can alleviate PSII photoinhibition by accelerating the repair of D1 protein and improving the activities of antioxidant enzymes in chloroplasts.  相似文献   

15.
Wang HS  Yu C  Zhu ZJ  Yu XC 《Plant cell reports》2011,30(6):1029-1040
GDP-mannose pyrophosphorylase (GMPase: EC 2.7.7.22) plays a crucial role in the synthesis of l-ascorbate (AsA) and the consequent detoxification of reactive oxygen species (ROS). Herein, a GMPase (accession ID DQ449030) was identified and cloned from tomato. The full-length cDNA sequence of this gene contains 1,498 bp nucleotides encoding a putative protein with 361 amino acid residues of approximate molecular weight 43 kDa. Northern blot analysis revealed that the GMPase was expressed in all examined tomato tissues, but its expression level was up-regulated in tomato plants subjected to abnormal temperatures. We then overexpressed this tomato GMPase in tobacco plants and observed that the activity of GMPase and the content of AsA were significantly increased by two- to fourfold in the leaves of transgenic tobacco plants. The effect of this gene overexpression was superimposed by the treatments of high or low temperature in tobacco, since the activities of both chloroplastic SOD (superoxide dismutase EC 1.15.1.1), APX (ascorbate peroxidase EC 1.11.1.7) and the content of AsA in leaves were significantly higher in transgenic plants than those of WT, while the contents of H2O2 and O2 −· were reduced. Meanwhile, relative electric conductivity increased less in transgenic plants than that in WT, and the net photosynthetic rate (P n) and the maximal photochemical efficiency of PSII (F v/F m) of transgenic plants were notably higher than those of WT under temperature stresses. In conclusion, the overexpression of GMPase increased the content of AsA, thereby leading to the increase in tolerance to temperature stress in transgenic plants.  相似文献   

16.
17.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

18.
19.
A drought stress-responsive Cys2/His2-type zinc finger protein gene DgZFP3 was previously isolated (Liu et al., Afr J Biotechnol 11:7781–7788, 2012b) from chrysanthemum. To assess roles of DgZFP3 in plant drought stress responses, we performed gain-of-function experiment. The DgZFP3-overexpression tobacco plants showed significant drought tolerance over the wild type (WT). The transgenic lines exhibited less accumulation of H2O2 under drought stress, more accumulation of proline and greater activities of peroxidase (POD) and superoxide dismutase than the WT under both control conditions and drought stress. In addition, there was greater up-regulation of the ROS-related enzyme genes (NtSOD and NtPOD) and stress-related genes (NtLEA5 and NtDREB) in transgenic lines under normal or drought conditons. Thus DgZFP3 probably plays a positive regulatory role in drought stress response and has the potential to be utilized in transgenic breeding to improve drought stress tolerance in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号