首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elevated atmospheric CO2 concentration ([CO2]) generally enhances C3 plant productivity, whereas acute heat stress, which occurs during heat waves, generally elicits the opposite response. However, little is known about the interaction of these two variables, especially during key reproductive phases in important temperate food crops, such as soybean (Glycine max). Here, we grew soybean under elevated [CO2] and imposed high‐ (+9°C) and low‐ (+5°C) intensity heat waves during key temperature‐sensitive reproductive stages (R1, flowering; R5, pod‐filling) to determine how elevated [CO2] will interact with heat waves to influence soybean yield. High‐intensity heat waves, which resulted in canopy temperatures that exceeded optimal growth temperatures for soybean, reduced yield compared to ambient conditions even under elevated [CO2]. This was largely due to heat stress on reproductive processes, especially during R5. Low‐intensity heat waves did not affect yields when applied during R1 but increased yields when applied during R5 likely due to relatively lower canopy temperatures and higher soil moisture, which uncoupled the negative effects of heating on cellular‐ and leaf‐level processes from plant‐level carbon assimilation. Modeling soybean yields based on carbon assimilation alone underestimated yield loss with high‐intensity heat waves and overestimated yield loss with low‐intensity heat waves, thus supporting the influence of direct heat stress on reproductive processes in determining yield. These results have implications for rain‐fed cropping systems and point toward a climatic tipping point for soybean yield when future heat waves exceed optimum temperature.  相似文献   

2.
3.
Ash (Fraxinus excelsior L.), birch (Betula pubescens Ehrh.), sycamore (Acer pseudoplatanus L.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) leaf litters were monitored for decomposition rates and nutrient release in a laboratory microcosm experiment. Litters were derived from solar domes where plants had been exposed to two different CO2 regimes: ambient (350 L L-1 CO2) and enriched (600 L L-1 CO2).Elevated CO2 significantly affected some of the major litter quality parameters, with lower N, higher lignin concentrations and higher ratios of C/N and lignin/N for litters derived from enriched CO2. Respiration rates of the deciduous species were significantly decreased for litters grown under elevated CO2, and reductions in mass loss at the end of the experiment were generally observed in litters derived from the 600 ppm CO2 treatment. Nutrient mineralization, dissolved organic carbon, and pH in microcosm leachates did not differ significantly between the two CO2 treatments for any of the species studied. Litter quality parameters were examined for correlations with cumulative respiration and decomposition rates: N concentration, C/N and lignin/N ratios showed the highest correlations, with differences between litter types. The results indicate that higher C storage will occur in soil as a consequence of litter quality changes resulting from higher atmospheric concentrations of CO2.Abbreviations CHO soluble carbohydrates - DOC dissolved organic carbon - HCel holocellulose - WTREM weight remaining  相似文献   

4.
The performance of predators of plant pests is mainly driven by their ability to find prey. Recent studies suggest that rising atmospheric carbon dioxide (CO2) concentrations will affect the semiochemistry of plant–insect relationships, possibly altering prey‐finding behaviour. In the present study, we test the hypothesis that higher atmospheric CO2 concentrations affect the oviposition behaviour of an aphidophagous hoverfly and alter the development of its larvae. We also test the hypothesis that volatile compounds released by the plant–aphid association are modified under elevated CO2. Broad bean plants infested with pea aphids are grown under ambient (450 ppm) or elevated CO2 (800 ppm) concentrations. Plants raised under each treatment are then presented to gravid hoverfly females in a dual‐choice bioassay. In addition, emerging Episyrphus balteatus larvae are directly fed with aphids reared under ambient or elevated CO2 conditions and then measured and weighed daily until pupation. Odours emitted by the plant–aphid association are sampled. A larger number of eggs is laid on plants grown under ambient CO2 conditions. However, no significant difference is observed between the two groups of predatory larvae grown under different CO2 concentrations, indicating that the CO2 concentration does not affect the quality of their aphid diet. Although plant volatiles do not differ between the ambient and elevated CO2‐treated plants, we find that the quantity of aphid alarm pheromone is lower on the plant–aphid association raised under the elevated CO2 condition. This suggests that an alteration of semiochemical emissions by elevated CO2 concentrations impacts the oviposition behaviour of aphid predators.  相似文献   

5.
Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass at the current CO2 level) may occur. We analysed literature sources that studied CO22environment interactions on the growth of herbaceous species and tree seedlings during the vegetative phase. For each experiment we calculated the difference in BER for plants that were grown under 'optimal' and 'non-optimal' conditions. Assuming that interactions would be most apparent if the environmental stress strongly diminished growth, we scaled the difference in the BER values by the growth reduction due to the stress factor. In our compilation we found a large variability in CO22environment interactions between experiments. To test the impact of experimental design, we simulated a range of analyses with a plant-to-plant variation in size common in experimental plant populations, in combination with a number of replicates generally used in CO22environment studies. A similar variation in results was found as in the compilation of real experiments, showing the strong impact of stochasticity. We therefore caution against strong inferences derived from single experiments and suggest rather a reliance on average interactions across a range of experiments. Averaged over the literature data available, low soil nutrient supply or sub-optimal temperatures were found to reduce the proportional growth stimulation of elevated CO2. In contrast, BER increased when plants were grown at low water supply, albeit relatively modestly. Reduced irradiance or high salinity caused BER to increase in some cases and decrease in others, resulting in an average interaction with elevated CO2 that was not significant. Under high ozone concentrations, the relative growth enhancement by elevated CO2 was strongly increased, to the extent that high CO2 even compensated in an absolute way for the harmful effect of ozone on growth. No systematic difference in response was found between herbaceous and woody species for any of the environmental variables considered.  相似文献   

6.
7.
Key Message

Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina.

Abstract

The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species (S. alterniflora and S. maritima), their F1 hybrid S. x townsendii, and the neoallododecaploid S. anglica. We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/Copia-Ivana- Copia-SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.

  相似文献   

8.
9.
10.
While exposure of C3 plants to elevated [CO2] would be expected to reduce production of reactive oxygen species (ROS) in leaves because of reduced photorespiratory metabolism, results obtained in the present study suggest that exposure of plants to elevated [CO2] can result in increased oxidative stress. First, in Arabidopsis and soybean, leaf protein carbonylation, a marker of oxidative stress, was often increased when plants were exposed to elevated [CO2]. In soybean, increased carbonyl content was often associated with loss of leaf chlorophyll and reduced enhancement of leaf photosynthetic rate (Pn) by elevated [CO2]. Second, two-dimensional (2-DE) difference gel electrophoresis (DIGE) analysis of proteins extracted from leaves of soybean plants grown at elevated [CO2] or [O3] revealed that both treatments altered the abundance of a similar subset of proteins, consistent with the idea that both conditions may involve an oxidative stress. The 2-DE analysis of leaf proteins was facilitated by a novel and simple procedure to remove ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from soluble soybean leaf extracts. Collectively, these findings add a new dimension to our understanding of global change biology and raise the possibility that oxidative signals can be an unexpected component of plant response to elevated [CO2].  相似文献   

11.
Plants have tremendous capacity to adjust their morphology, physiology and metabolism in response to changes in growing conditions. Thus, analysis solely of plants grown under constant conditions may give partial or misleading indications of their responses to the fluctuating natural conditions in which they evolved. To obtain data on growth condition‐dependent differences in metabolite levels, we compared leaf metabolite profiles of Arabidopsis thaliana growing under three constant laboratory light conditions: 30 [low light (LL)], 300 [normal light (NL)] and 600 [high light (HL)]µmol photons m?2 s?1. We also shifted plants to the field and followed their metabolite composition for 3 d. Numerous compounds showed light intensity‐dependent accumulation, including: many sugars and sugar derivatives (fructose, sucrose, glucose, galactose and raffinose); tricarboxylic acid (TCA) cycle intermediates; and amino acids (ca. 30% of which were more abundant under HL and 60% under LL). However, the patterns differed after shifting NL plants to field conditions. Levels of most identified metabolites (mainly amino acids, sugars and TCA cycle intermediates) rose after 2 h and peaked after 73 h, indicative of a ‘biphasic response’ and ‘circadian’ effects. The results provide new insight into metabolomic level mechanisms of plant acclimation, and highlight the role of known protectants under natural conditions.  相似文献   

12.
Diurnal photosynthesis of Nostoc flagelliforme wasinvestigated at varied levels of CO2 concentrations and desiccationin order to estimate the effects of enriched CO2 and watering on itsdaily production. Photosynthetic activity was closely correlated with thedesiccated status of the algal mats, increased immediately after watering,reached a maximum at moderate water loss, and then declined with furtherdesiccation. Increased CO2 concentration enhanced the diurnalphotosynthesis and raised the daily production. Watering twice per day enhancedthe daily production due to prolonged period of active photosynthesis. Thevalues of daily net production were 132–1280 molCO2 g (d. wt)–1 d–1,corresponding to about 0.6–6.1% daily increase in dry weight.High-CO2-grown mats required higher levels of photon flux density tosaturate the alga's photosynthesis in air. Air-grown mats showed higherphotosynthetic affinity for CO2 and higher levels of darkrespirationcompared with high-CO2-grown samples.  相似文献   

13.
White birch (Betula papyrifera Marsh.) seedlings were exposed to ambient or doubled ambient carbon dioxide concentration ([CO2]), three soil temperatures (Tsoil) (low, intermediate, high), and three phosphorus (P) regimes (low, medium, high) in environment‐controlled greenhouses. Height (H), root‐collar diameter (RCD), biomass, and leaf phosphorus concentration (leaf P) were determined four months after initiation of treatments. The low Tsoil reduced H, RCD, shoot biomass, root biomass and total seedling biomass whereas the high‐P level and the [CO2] elevation increased all the growth and biomass parameters. Elevated [CO2] significantly reduced leaf P. There were significant two‐factor interactions suggesting that the effect of elevated [CO2] on (1) H, total biomass, biomass of plant components, and leaf P was dependent on Tsoil, (2) total biomass was contingent on P regime. For instance, the positive response of H and total biomass to elevated [CO2] was limited to seedlings raised under the intermediate and high Tsoil, respectively. In addition, [CO2] elevation increased total biomass only at the high‐P regime but not at the low‐ or medium‐P level where the effect of [CO2] was statistically insignificant. No significant main effect of treatment or interaction was observed for root to shoot biomass ratio.  相似文献   

14.
It is unclear how changing atmospheric composition will influence the plant–soil interactions that determine soil organic matter (SOM) levels in fertile agricultural soils. Positive effects of CO2 fertilization on plant productivity and residue returns should increase SOM stocks unless mineralization or biomass removal rates increase in proportion to offset gains. Our objectives were to quantify changes in SOM stocks and labile fractions in prime farmland supporting a conventionally managed corn–soybean system and the seasonal dynamics of labile C and N in soybean in plots exposed to elevated [CO2] (550 ppm) under free-air concentration enrichment (FACE) conditions. Changes in SOM stocks including reduced C/N ratios and labile N stocks suggest that SOM declined slightly and became more decomposed in all plots after 3 years. Plant available N (>273 mg N kg−1) and other nutrients (Bray P, 22–50 ppm; extractable K, 157–237 ppm; Ca, 2,378–2,730 ppm; Mg, 245–317 ppm) were in the high to medium range. Exposure to elevated [CO2] failed to increase particulate organic matter C (POM-C) and increased POM-N concentrations slightly in the surface depth despite known increases (≈30%) in root biomass. This, and elevated CO2 efflux rates indicate accelerated decay rates in fumigated plots (2001: elevated [CO2]: 10.5 ± 1.2 μmol CO2 m−2 s−1 vs. ambient: 8.9 ± 1.0 μmol CO2 m−2 s−1). There were no treatment-based differences in the within-season dynamics of SOM. Soil POM-C and POM-N contents were slightly greater in the surface depth of elevated than ambient plots. Most studies attribute limited ability of fumigated soils to accumulate SOM to N limitation and/or limited plant response to CO2 fertilization. In this study, SOM turnover appears to be accelerated under elevated [CO2] even though soil moisture and nutrients are non-limiting and plant productivity is consistently increased. Accelerated SOM turnover rates may have long-term implications for soil’s productive potential and calls for deeper investigation into C and N dynamics in highly-productive row crop systems.  相似文献   

15.
Overdieck  Dieter 《Plant Ecology》1993,104(1):403-411
The CO2 enrichment effects (300–650 µmol mol-1) on mineral concentration (N, P, K, Ca, Mg, Mn, Fe, Zn), absolute total mineral contents per individual and of whole stands of four herbaceous (Trifolium repens L.,Trifolium pratense L.,Lolium perenne L.,Festuca pratensis HUDS.) and two woody species (Acer pseudo-platanus L.,Fagus sylvatica L.) were investigated.In general, the mineral concentration of the plant tissues decreased (all six species: N>Ca>K>Mg) with the exception of P. Mn and Fe were only determined for the tree species. Both decreased in concentration (Mn>Fe). Zn was only analysed forTrifolium pratense andFestuca pratensis and decreased significantly in the grass.Despite of decreases in concentrations of as much as 20% in some cases there were increases in absolute amounts per individual and, therefore, in the whole vegetation up to 25% because of the enhanced dry matter accumulation at elevated CO2 supply.Dedicated to Prof. Dr. R. Bornkamm, TU-Berlin, on behalf of his 60th birthday  相似文献   

16.
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO2]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G s) to instantaneous changes in external [CO2] (C a) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO2] (1,500 ppm) and sub-ambient [O2] (13.0 %) compared to control conditions (380 ppm CO2, 20.9 % O2). We found that active control of stomatal aperture to [CO2] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C a were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO2]. The relationship between the degree of stomatal aperture control to C a above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO2] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.  相似文献   

17.
18.
A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2), and whether or not this constraint will become stronger over time. We explored the ecosystem‐scale relationship between responses of plant productivity and N acquisition to eCO2 in free‐air CO2 enrichment (FACE) experiments in grassland, cropland and forest ecosystems and found that: (i) in all three ecosystem types, this relationship was positive, linear and strong (r2 = 0.68), but exhibited a negative intercept such that plant N acquisition was decreased by 10% when eCO2 caused neutral or modest changes in productivity. As the ecosystems were markedly N limited, plants with minimal productivity responses to eCO2 likely acquired less N than ambient CO2‐grown counterparts because access was decreased, and not because demand was lower. (ii) Plant N concentration was lower under eCO2, and this decrease was independent of the presence or magnitude of eCO2‐induced productivity enhancement, refuting the long‐held hypothesis that this effect results from growth dilution. (iii) Effects of eCO2 on productivity and N acquisition did not diminish over time, while the typical eCO2‐induced decrease in plant N concentration did. Our results suggest that, at the decennial timescale covered by FACE studies, N limitation of eCO2‐induced terrestrial productivity enhancement is associated with negative effects of eCO2 on plant N acquisition rather than with growth dilution of plant N or processes leading to progressive N limitation.  相似文献   

19.
Rhizosphere microflora of winter wheat plants cultivated under elevated CO2   总被引:1,自引:0,他引:1  
We studied an effect of elevated atmospheric CO2 on rhizosphere microorganisms in a hydroponics system where young wheat plants provided the only source of C for microorganisms. Plants were cultivated in mineral solution in sterile silica sand and exposed to control (ambient) and elevated (double) CO2 concentrations for periods of 13, 20, 25 and 34 days.Microbial biomass C (C content in fraction of size 0.3–2.7 µm) was not affected by the elevated CO2 concentration during the first 25 days of plant growth and was increased after 34 days of plant growth. A content of poly--hydroxybutyrate (PHB) reserve compounds (measured as derivatized product of 3-hydroxy-butyric acid and N-tert-butyldimethylsilyl-N-methyltrifluoracetamide using GC–MS) was lowered significantly (p<0.001) in the elevated CO2 after 25 and 34 days. It was accompanied with a shift of bacterial distribution towards the nutritional groups utilising more complex organic material (number of CFUs on media with different sources of C and N). A coincidence of several events connected with plant and microbial carbon economy (decrease of an assimilation rate and relative growth rate of plants, small increase of microbial biomass, PHB decrease and suppression within the bacterial nutritional group requiring the most readily available source of C and energy) was observed in the system under elevated CO2 on the 25th day.A modification of the GC–MS method for the detection of low levels of PHB compounds in natural samples was developed. We excluded the lipids fractionation step and we used EI MS/MS detection of the main fragment ions of the derivatized compound. This guarantees that the ion profiles have high signal-to-noise ratio at correct retention time. The detection limit is then about 30 pg g-1 of sand or soil.The rhizosphere microflora responded very sensitively to the short-term changes in C partitioning in plants caused by the elevated CO2.  相似文献   

20.
Accurately predicting plant function and global biogeochemical cycles later in this century will be complicated if stomatal conductance (g(s)) acclimates to growth at elevated [CO(2)], in the sense of a long-term alteration of the response of g(s) to [CO(2)], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO(2)] of interest. Photosynthetic acclimation to long-term growth at elevated [CO(2)] occurs frequently. Acclimation of g(s) has rarely been examined, even though stomatal density commonly changes with growth [CO(2)]. Soybean was grown under field conditions at ambient [CO(2)] (378 micromol mol(-1)) and elevated [CO(2)] (552 micromol mol(-1)) using free-air [CO(2)] enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, vol IV, 221-224) with measurements of leaf gas exchange. The dependence of g(s) on A, h and [CO(2)] at the leaf surface was unaltered by long-term growth at elevated [CO(2)]. This suggests that the commonly observed decrease in g(s) under elevated [CO(2)] is due entirely to the direct instantaneous effect of [CO(2)] on g(s) and that there is no longer-term acclimation of g(s) independent of photosynthetic acclimation. The model accurately predicted g(s) for soybean growing under ambient and elevated [CO(2)] in the field. Model parameters under ambient and elevated [CO(2)] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO(2)] could be modelled without the need for parameterization at each growth [CO(2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号