首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Lake Tega, Japan, the shift of dominant algal species was caused as a result of discharging water from the adjacent river into the lake. The transition from cyanobacteria (mainly the genus Microcystis) to diatoms (mainly the genus Cyclotella) resulted in a disappearance of algal blooms. Although some environmental conditions such as flow rate, nutrient concentration, and transparency were changed by the project, the decisive factor for the transition has not been clarified yet. For the effective control of algal blooms by water discharge, this study aimed to elucidate the effects of daily renewal rate and nitrogen concentration on the interspecific competition between Microcystis aeruginosa and Cyclotella sp. Monoculture experiments were conducted to obtain growth characteristics for each species and mixed culture experiments were performed to examine their competitive abilities under various daily renewal rates of the culture medium (15 and 30 %) and nitrate concentrations (71.4, 178, and 357 μM). In addition to prepared medium, Lake Tega water was also used for mixed culture experiments. The results showed that the increase in a daily renewal rate contributed to the dominance of Cyclotella sp., while a nitrate concentration had little influence on the competition. We conclude that algal blooms composed of the genus Microcystis would be controlled by maintaining a daily renewal rate up to 30 % or more, which corresponded to the dilution rate of 0.36 day?1, under a nitrate concentration of ≤357 μM. The study would include essential information for the management of lakes suffering from frequent occurrences of algal blooms.  相似文献   

2.
The improvement of water quality in Lake Tega, Japan, has been carried out by dilution, causing the shift of dominant species from Microcystis aeruginosa to Cyclotella sp. in summer. The disappearance of Microcystis blooms would be related to dilution, but the detail effect has not been understood yet. In this study, the effect of nitrate concentration on the competition between M. aeruginosa and Cyclotella sp. was investigated through the single-species and the competitive culture experiments. The single-species culture experiment indicated that the half saturation constants for M. aeruginosa and Cyclotella sp. were 0.016 and 0.234?mg?N L?1, representing that M. aeruginosa would possess a higher affinity to nitrate. On the other hand, the maximum growth rate for Cyclotella sp. was obtained as 0.418?day?1, which did not represent a significant difference with 0.366?day?1 obtained for M. aeruginosa. The competitive culture experiment revealed that Cyclotella sp. completely dominated over M. aeruginosa at the nitrate concentrations of 0.5 and 2.5?mg?N L?1. The dominance of Cyclotella sp. could be attributed to the difference in the abilities of nitrate storage as well as nitrate uptake. One of the possibilities for the disappearance of Microcystis blooms caused by dilution as observed in Lake Tega could be due to the decrease in nitrate concentration, and the lower N:P ratio seemed not to relate to Microcystis blooms.  相似文献   

3.
Cyanobacterial blooms are found in many freshwater ecosystems around the world, but the effect of environmental factors on their growth and the proportion of species still require more investigation. In this study, the physiological responses of bloom‐forming cyanobacteria M icrocystis aeruginosa FACHB912, M icrocystis flos‐aquae FACHB1028 and P seudanabaena sp. FACHB1282 to iron deficiency were investigated. Their specific growth rates were found to decrease as the available iron concentration decreased. At low available iron concentrations of 1 × 10?7 M (pFe 21.3) and 5 × 10?8 M (pFe 21.6), M . aeruginosa had the lowest specific growth rate among three studied species. The cell sizes of M . flos‐aquae and Pseudanabaena sp. were significantly smaller under the lowest iron concentration. The chlorophyll a content of the three species decreased at the lowest iron concentration. The maximal relative electron transport rate, photosynthetic efficiency, and light‐saturation parameter of M . aeruginosa were lower than the other two cyanobacteria at pFe 21.3. Therefore, M . aeruginosa was the least able to adapt to iron deficiency. Under iron deficiency, the functional absorption cross‐section of PSII and electron transport rate on the acceptor side of PSII decreased in M . aeruginosa, while the connectivity factor between individual photosynthetic units increased in M . flos‐aquae, and the electron transport rate on the acceptor side of PSII and between PSII and PSI decreased in P seudanabaena sp. The ability to store iron was highest in M . flos‐aquae, followed by P seudanabaena sp. and M . aeruginosa. Thus, these results provide necessary information for detecting the role of iron in the succession of cyanobacterial species in Lake Taihu, the third largest freshwater lake in China, because all three species were isolated from this lake.  相似文献   

4.
Algal growth on organic compounds as nitrogen sources   总被引:19,自引:0,他引:19  
Two experimental series were run to evaluate the potential of algal development on dissolved organic nitrogen (DON) compounds as the sole source of nitrogen (N) nutrition. Monocultures of several common Lake Kinneret algae (Pediastrum duplex, Synechococcus sp., Microcystis aeruginosa, Aphanizomenon ovalisporum and Cyclotella sp.) were incubated for 3 weeks in the laboratory with different inorganic (NH4+, NO3-) or organic (hypoxanthine, urea, guanine, ornithine, glucosamine, lysine) nitrogen sources. Even though the cultures were not axenic, marked differences were observed in algal growth response. Pediastrum, Cyclotella and Aphanizomenon grew well on most N sources, and cyanobacterial growth and yield were consistently greatest when the urea was the only N source. We also followed algal growth and eventual species dominance in batch samples of GF/F-filtered lake water, supplemented with orthophosphate and different inorganic or organic N compounds and inoculated with concentrated lake phytoplankton. Although no clear impact on phytoplankton growth (as chlorophyll concentration) was observed, in seven out of 11 experiments we could discern changes in the algal species that became dominant in flasks with different organic and inorganic N sources. Our results are consistent with the proposition that components of the DON pool are not only an important potential, direct or indirect N source for phytoplankton, but also that different algal species can exploit these sources with varying capabilities so that different N substrates may selectively stimulate the development of dominant algal species.   相似文献   

5.
Although iron is a key nutrient for algal growth just as are nitrogen and phosphorus in aquatic systems, the effects of iron on algal growth are not well understood. The growth characteristics of two species of cyanobacteria, Microcystis aeruginosa and Planktothrix agardhii, in iron-limited continuous cultures were investigated. The relationships between dissolved iron concentration, cell quota of iron, and population growth rate were determined applying two equations, Monod’s and Droop’s equations. Both species produced hydroxamate-type siderophores, but neither species produced catechol-type siderophores. The cell quota of nitrogen for both M. aeruginosa and P. agardhii decreased with decreasing cell quota of iron. The cell quota of phosphorus for M. aeruginosa decreased with decreasing cell quota of iron, whereas those for P. agardhii did not decrease. Iron uptake rate was measured in ironlimited batch cultures under different degrees of iron starvation. The results of the iron uptake experiments suggest that iron uptake rates are independent of the cell quota of iron for M. aeruginosa and highly dependent on the cell quota for P. agardhii. A kinetic model under iron limitation was developed based on the growth characteristics determined in our study, and this model predicted accurately the algal population growth and iron consumption. The model simulation suggested that M. aeruginosa is a superior competitor under iron limitation. The differences in growth characteristics between the species would be important determinants of the dominance of these algal species.  相似文献   

6.
In aquaculture, particularly in bivalve hatcheries, the biochemical composition of algal diets has a strong influence on larval and post-larval development. Biochemical composition is known to be related to culture conditions, among which light represents a major source of variation. The effects of blue light on biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14 were assessed in chemostat at a single irradiance (300 μmol photons m?2 s?1) and compared with white light. Two different dilution (renewal) rates were also tested: 0.7 and 0.2 d?1. Relative carbohydrate content was lower under blue light than under white light at both dilution rates, whereas chlorophyll a and photosynthesis activity were higher. In contrast, carbon quota was lower and protein content higher under blue light than under white light, but only at 0.7 d?1. Despite these metabolic differences, cell productivity was not significantly affected by the spectrum. However, the nitrogen to carbon ratio and photosynthetic activity were higher at 0.7 d?1 than at 0.2 d?1, while carbon quota and carbohydrate content were lower. Our results show that blue light may influence microalgal metabolism without reducing productivity for a given growth rate, a result that should be of great interest for microalgal production in aquaculture.  相似文献   

7.
Some physiological characteristics of photosynthetic inorganic carbon uptake have been examined in the marine diatoms Phaeodactylum tricornutum and Cyclotella sp. Both species demonstrated a high affinity for inorganic carbon in photosynthesis at pH7.5, having K1/2(CO2) in the range 1.0 to 4.0mmol m?3 and O2? and temperature-insensitive CO2 compensation concentrations in the range 10.8 to 17.6 cm3 m?3. Intracellular accumulation of inorganic carbon was found to occur in the light; at an external pH of 7.5 the concentration in P. tricornutum was twice, and that in Cyclotella 3.5 times, the concentration in the suspending medium. Carbonic anhydrase (CA) was detected in intact Cyclotella cells but not in P. tricornutum, although internal CA was detected in both species. The rates of photosynthesis at pH 8.0 of P. tricornutum cells and Cyclotella cells treated with 0.1 mol m?3 acetazolamide, a CA inhibitor, were 1.5- to 5-fold the rate of CO2 supply, indicating that both species have the capacity to take up HCO3? as a source of substrate for photosynthesis. No Na+ dependence for HCO3? could be detected in either species. These results indicate that these two marine diatoms have the capacity to accumulate inorganic carbon in the light as a consequence, in part, of the active uptake of bicarbonate.  相似文献   

8.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. showed pronounced differences in chemical composition and ability to maintain P fluxes. The cellular P:C ratio (Qp) and the surplus P:C ratio (Qsp) were higher in M. aeruginosa, indicating a lower yield of biomass C per unit of P. The subsistence quota (Qp) was 1.85 μg P·mg C?1in S. luetkemuellerii and 6.09 μg P·mg C?1in M. aeruginosa, whereas the respective Qp of P saturnted organisms (Qs) were 43 and 63 μg P·mg C?1. These stores could support four divisions in S. luetkemuellerii and three divisions in M. aeruginosa, which suggests that the former exhibited highest storage capacity (Qs/Q0). M. aeruginosa showed a tenfold higher activity of alkaline phosphatase than S. luetkemuellerii when P starved. The optimum N:P ratio (by weight) was 5 in S. luetkemuellerii and 7 in M. aeruginosa. The initial uptake of Pi pulses in the organisms was not inhibited by rapid (<1 h) internal feedback mechanisms and the short term uptake rote could be expressed solely as a function of ambient Pi. The maximum cellular C-based uptake rate (Vm) in P starved M. aeruginosa was up to 50 times higher than that of S. luetkemuellerii. It decreased with increasing growth rate (P status) in the former species and remained fairly constant in the latter. The corresponding cellular P-based value (Um= Vm/Qp) decreased with growth rate in both species and was about 10 times higher in P started M. aeruginosa than in S. luetkemuellerii. The average half saturation constant for uptake (Km) was equal for both species (22 μg P·L?1) and varied with the P status. S. luetkemuellerii exhibited shifts in the uptake rate of Pi that were characterized by increased affinity (Um/Km) at low Pi, concentrations (<4 μg P·L?1) compared to that at higher concentrations. The species thus was well adapted to uptake at low ambient Pi, but M. aeruginosa was superior in Pi uptake under steady state and transient conditions when the growth rate was lower than 0.75 d?1. Moreover, M. aeruginosa was favored by pulsed addition of Pi. M. aeruginosa relpased Pi at a higher rate than S. luetkemuellerii. Leakage of Pi from the cells caused C-shaped μ vs. Pi curves. Therefore, no unique Ks for growth could be estimated. The maximum growth rate (μm) (23° C) was 0.94 d?1for S. luetkemuellerii and 0.81 d?1for M. aeruginosa. The steady state concentration of Pi (P*) was lower in M. aeruginosa than in S. luetkemuellerii at medium growth rates. The concentration of Pi at which the uptake and release of Pi was equal (Pc was, however, lower in S. luetkemuellerii.  相似文献   

9.
Biogas production from nitrogen‐rich feedstock results in release of ammonia (NH3), causing inhibition of the microbial process. The reported threshold ammonia value for stable biogas production varies greatly between studies, probably because of differences in operating conditions. Moreover, it is often difficult to separate the effect of ammonia inhibition from that of organic loading rate (OLR), as these two factors are often interrelated. This study attempted to distinguish the effects of ammonia and OLR by analysis of two laboratory‐scale biogas reactors operating with thin stillage and subjected to an increase in free ammonia (from 0.30 to 1.1 g L?1) either by addition of an external nitrogen source (urea) or by increasing the OLR (3.2–6.0 g volatile solids L?1 d?1). The results showed that ammonia concentration was detrimental for process performance, with the threshold for stability in both processes identified as being about 1 g NH3‐N L?1, irrespective of OLR. Analysis of the methanogenic community showed limited differences between the two reactors on order level and a clear increase in the abundance of Methanomicrobiales, particularly Methanoculleus sp., in response to increasing ammonia concentration. Further comprehensive molecular analysis revealed that diverse Methanoculleus species dominated in the reactors at a given ammonia level at different OLR. The acetogenic community was clearly affected by both ammonia concentration and OLR, suggesting that the volatile fatty acid load in relation to the higher OLR was important for the dynamics of this community.  相似文献   

10.
Partitioning of the carbon (C) fixed during photosynthesis between neutral lipids (NL) and carbohydrates was investigated in Isochrysis sp. (Haptophyceae) in relation to its nitrogen (N) status. Using batch and nitrate‐limited continuous cultures, we studied the response of these energy reserve pools to both conditions of N starvation and limitation. During N starvation, NL and carbohydrate quotas increased but their specific growth rates (specific rates of variation, μCAR and μNL) decreased. When cells were successively deprived and then resupplied with NO3, both carbohydrates and neutral lipids were inversely related to the N quota (N:C). These negative relationships were not identical during N impoverishment and replenishment, indicating a hysteresis phenomenon between N and C reserve mobilizations. Cells acclimated to increasing degrees of N limitation in steady‐state chemostat cultures showed decreasing NL quota and increasing carbohydrate quota. N starvation led to a visible but only transient increase of NL productivity. In continuous cultures, the highest NL productivity was obtained for the highest experimented dilution rate (D = 1.0 d?1; i.e., for non N‐limited growth conditions), whereas the highest carbohydrate productivity was obtained at D = 0.67 d?1. We used these results to discuss the nitrogen conditions that optimize NL productivities in the context of biofuel production.  相似文献   

11.
Blooming and non-blooming periods between 2004 and 2006 in a hypereutrophic reservoir, where cyanobacterial blooms have previously been reported to be permanent, presented an opportunity to characterise factors that may favour cyanobacterial dominance. As a bloom developed in May 2004, a shift to dominance by Microcystis aeruginosa, similar to competitive exclusion, was observed. The period of M. aeruginosa dominance was characterised by the lowest Secchi depth and euphotic zone depth readings, and a decline of non-buoyant species because of competitive exclusion by M. aeruginosa, which reduced light availability in the water column. After the bloom collapsed, the euphotic zone depth increased, followed by the establishment of a Cryptomonas–Cyclotella phytoplankton assemblage. Cyanobacterial dominance within the phytoplankton assemblage was favoured by an extended stratification and was limited by nitrogen (mainly ammonium) availability. Other taxa were limited by light availability, as shown by their decline when M. aeruginosa dominated. The period of extended stratification, an increase in ammonium concentration and a decrease in nitrate concentration promoted dominance by M. aeruginosa.  相似文献   

12.
In the present study, we experimentally investigated the phosphate uptake kinetics of benthic microalga Nitzschia sp. isolated from Hiroshima Bay, Japan. The maximum uptake rate (ρmax) obtained by short‐term experiments was 6.84 pmol cell?1 h?1 for phosphate. The half‐saturation constant for uptake (KS) was 61.2 µmol cell?1 h?1. Both the ρmax and Ks of this species were extremely high, suggesting that Nitzschia sp. is adapted to benthic environments, where nutrient concentrations are much higher than in the water column. The specific maximum growth rate (µ'max) and minimum cell quota (Q0) for the P‐limited condition, obtained by a semi‐continuous growth experiment, were 0.48 day?1 and 0.045 pmol cell?1, respectively. It is concluded that Nitzschia sp. could be a ‘storage strategist’ species, meaning it adapts so as to minimize the influence of fluctuations in phosphate conditions resulting from the change in redox conditions of sediment due to bioturbation.  相似文献   

13.
We evaluated the kinetic culture characteristics of the microalgae Cyanobium sp. grown in vertical tubular photobioreactor in semicontinuous mode. Cultivation was carried out in vertical tubular photobioreactor for 2 L, in 57 d, at 30 °C, 3200 Lux, and 12 h light/dark photoperiod. The maximum specific growth rate was found as 0.127 d−1, when the culture had blend concentration of 1.0 g L−1, renewal rate of 50%, and sodium bicarbonate concentration of 1.0 g L−1. The maximum values of productivity (0.071 g L−1 d−1) and number of cycles (10) were observed in blend concentration of 1.0 g L−1, renewal rate of 30%, and bicarbonate concentration of 1.0 g L−1. The results showed the potential of semicontinuous cultivation of Cyanobium sp. in closed tubular bioreactor, combining factors such as blend concentration, renewal rate, and sodium bicarbonate concentration.  相似文献   

14.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

15.
Marine phytoplankton have conserved elemental stoichiometry, but there can be significant deviations from this Redfield ratio. Moreover, phytoplankton allocate reduced carbon (C) to different biochemical pools based on nutritional status and light availability, adding complexity to this relationship. This allocation influences physiology, ecology, and biogeochemistry. Here, we present results on the physiological and biochemical properties of two evolutionarily distinct model marine phytoplankton, a diatom (cf. Staurosira sp. Ehrenberg) and a chlorophyte (Chlorella sp. M. Beijerinck) grown under light and nitrogen resource gradients to characterize how carbon is allocated under different energy and substrate conditions. We found that nitrogen (N)‐replete growth rate increased monotonically with light until it reached a threshold intensity (~200 μmol photons · m?2 · s?1). For Chlorella sp., the nitrogen quota (pg · μm?3) was greatest below this threshold, beyond which it was reduced by the effect of N‐stress, while for Staurosira sp. there was no trend. Both species maintained constant maximum quantum yield of photosynthesis (mol C · mol photons?1) over the range of light and N‐gradients studied (although each species used different photophysiological strategies). In both species, C:chl a (g · g?1) increased as a function of light and N‐stress, while C:N (mol · mol?1) and relative neutral lipid:C (rel. lipid · g?1) were most strongly influenced by N‐stress above the threshold light intensity. These results demonstrated that the interaction of substrate (N‐availability) and energy gradients influenced C‐allocation, and that general patterns of biochemical responses may be conserved among phytoplankton; they provided a framework for predicting phytoplankton biochemical composition in ecological, biogeochemical, or biotechnological applications.  相似文献   

16.
Abstract Net nitrate uptake rates were measured and the kinetics calculated in non-nodulated Pisum sativum L. cv. Marma and Lemna gibba L. adapted to constant relative rates of nitrate-N additions (RA), ranging from 0.03 to 0.27 d?1 for Pisum and from 0.05 to 0.40 d?1 for Lemna, Vmax of net nitrate uptake (measured in the range 10 to 100 mmol m?3 nitrate, i.e. ‘system I’) increased with RA in the growth limiting range but decreased when RA exceeded the relative growth rate (RGR), Km was not significantly related to changes in RA. On the basis of previous 13N-flux experiments, it is concluded that the differences in Vmax at growth limiting RA are attributable to differences in influx rates. Linear relationships between Vmax and tissue nitrogen concentrations were obtained in the growth limiting range for both species, and extrapolated intercepts relate well with the previously defined minimal nitrogen concentrations for plant growth (Oscarson, Ingemarsson & Larsson, 1989). Analysis of Vmax for net nitrate uptake on intact plant basis in relation to nitrogen demand during stable, nitrogen limited, growth shows an increased overcapacity at lower RA values in both species, which is largely explained by the increased relative root size at low RA. A balancing nitrate concentration, defined as the steady state concentration needed to sustain the relative rate of increase in plant nitrogen (RN), predicted by RA, was calculated for both species. In the growth limiting range, this value ranges from 3.5 mmol m?3 (RA 0.03 d?1) to 44 mmol m?3 (RA 0.21 d?1) for Pisum and from 0.2 mmol m?3 (RA 0.05 d?1) to 5.4 mmol m?3 (RA 0.03 d?1) for Lemna. It is suggested that this value can be used as a unifying measure of the affinity for nitrate, integrating the performance of the nitrate uptake system with nitrate flux and long term growth and demand for nitrogen.  相似文献   

17.
Diatoms are a group of highly abundant and diverse aquatic algae species. They contain high lipid content along with many bioactive compounds that can be exploited for biotechnological applications. Despite these attractive attributes, diatoms are underrepresented in production projects due to difficulties in their cultivation. To optimize the growth of three freshwater diatom isolates, Cyclotella sp., Synedra sp. and Navicula sp., an orthogonal assay on N, P, Si and Fe, as well as temperature and pH, was designed using traditional single‐factor tests. We also studied the effect of using nanosilica as an alternate Si source on growth and found that the diatom isolates studied achieved their highest growth rates under different combinations of nutrient and environmental conditions. Silica had the greatest influence on growth, followed by phosphate and iron. The optimized growth conditions for Synedra sp. were N: 30 mg L?1, P: 3 mg L?1, Si: 14.8 mg L?1, Fe: 0.448 mg L?1, temperature 25°C and pH 8. For Navicula sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.112 mg L?1, temperature 30°C and pH 7.5–8. For Cyclotella sp.: N: 20 mg L?1, P: 2.5 mg L?1, Si: 19.7 mg L?1, Fe: 0.448 mg L?1, temperature 30°C and pH 7.5–8. Nano silica negatively affected growth in Navicula sp. and Cyclotella sp., but no such effect was observed in Synedra sp. Fatty acid profiling showed C16:0, C16:1(n ? 7), C18:0 and C20:5(n ? 3) as major fatty acids, with no significant differences in fatty acid methyl ester profiles between traditional and modified media. This work gives us a new insight into the growth requirements of freshwater diatom species, which are less studied than marine species.  相似文献   

18.
The cyanobacterial species composition of nine Greek waterbodies of different type and trophic status was examined during the warm period of the year (May–October). Cyanobacterial water blooms were observed in all waterbodies. Forty-six cyanobacterial taxa were identified, 11 of which are known to be toxic. Eighteen species are reported for the first time in these waterbodies, 8 of which are known to produce toxins. Toxin producing species were found in all of the waterbodies and were primarily dominant in bloom formations (e.g., Microcystis aeruginosa, Anabaena flos-aquae, Aphanizomenon flos-aquae and Cylindrospermopsis raciborskii). Cosmopolitan species (e.g., M. aeruginosa), pantropic (e.g., Anabaenopsis tanganyikae) and holarctic species (e.g., Anabaena flos-aquae) were encountered. Shallow, eutrophic waterbodies had blooms dominated by Microcystis species and were characterized by phytoplankton association M. Anabaena and Aphanizomenon species of association H were dominant in waterbodies with low dissolved inorganic nitrogen and thermal stratification in the summer. Total cyanobacterial biovolumes (CBV) ranged from 7 to 9,507 cm3 m−3 and were higher than Alert Level 2 and Guidance Level 2 (10 cm3 m−3; World Health Organization; WHO) in seven of the waterbodies. Chlorophyll a concentrations ranged from 6 to 90,000 mg m−3 and were higher than Alert Level 2 and Guidance Level 2 (50 mg m−3; WHO) in eight of the waterbodies. There is also an elevated risk of acute toxicosis (Guidance Level 3; WHO) in five waterbodies. Water of an undesirable quality, hazardous to humans and animals occurs in several Greek waterbodies.  相似文献   

19.
With the human intensification of agricultural and industrial activities, large amount of reduced nitrogen enter into the biosphere, which consequently results in the development of global eutrophication and cyanobacterial blooms. However, no research had reported the effect of ammonia toxicity on the algal succession. In this study, we investigated the ammonia toxicity to 19 algal species or strains to test the hypothesis that ammonia may regulate the succession of cyanobacterial blooms and the distribution of common algal species in freshwater lakes. The bloom‐forming cyanobacterium Microcystis aeruginosa PCC 7806 suffered from ammonia toxicity at high pH value and light intensity conditions. Low NH4Cl concentration (0.06 mmol L?1) resulted in the decrease of operational PSII quantum yield by 50% compared with the control exposed to 1000 μmol photons m?2 s?1 for 1 h at pH 9.0 ± 0.2, which can be reached in freshwater lakes. Furthermore, the tolerant abilities to NH3 toxicity of 18 freshwater algal species or strains were as follows: hypertrophication species > eutrophication species > mesotrophication species > oligotrophication species. The different sensitivities of NH3 toxicity in this study could well explain the distributing rule of common algal species in the freshwater lakes of different trophic states. Meanwhile, the cyanobacterial bloom (e.g. M. aeruginosa) always happened at the low concentration of ammonia in summer, and disappeared with the decrease of ammonia. This may be attributed to the toxic effect of ammonia to M. aeruginosa in spring (the average and maximum ammonia concentration were 0.08 and 0.72 mmol L?1 in 33 Chinese lakes), and the low level of NH3‐N in summer and fall in the lakes might be used as preferred nitrogen nutrition by M. aeruginosa, rather than with toxicity. Therefore, ammonia could be a key factor to determine the distribution of common algal species and cyanobacterial bloom in the freshwater systems.  相似文献   

20.
Nannochloropsis sp. was grown to the exponential phase and transferred to the high CO2 (2,800 μl l−1) and irradiance (100 μmol photons m−2 s−1) condition with different levels of nitrate and phosphate for 72 h, then the photosynthetic activity and inorganic carbon acquisition of the alga were measured. The apparent photosynthetic efficiency (α) of Nannochloropsis sp. decreased with increasing NO3 concentration from 150 to 3,000 μM, and the high nitrate-grown cells showed the lowest levels of light-saturated photosynthetic rate (P m), while the low nitrate-grown cells showed the highest levels of dark respiration rate (R d). The maximal light-saturated photosynthetic rate and the minimal dark respiration rate were seen under the middle nitrate condition. When the nitrate concentration ranged from 150 to 3,000 μM, the affinity for inorganic carbons of Nannochloropsis sp. increased sharply with the increasing NO3 concentration to 300 μM and then decreased significantly. The middle phosphate-grown cells exhibited the highest light-saturated photosynthetic rate and apparent photosynthetic efficiency, however, the affinity for inorganic carbons of Nannochloropsis sp. was the maximum under the low phosphate condition. It was shown that the appropriate nitrogen and phosphorus levels were of vital importance to the photosynthesis of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号