首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The method is based on substitution fixation at —25° C of quickly frozen tissue with a 90% alcohol solution saturated with silver nitrate. The silver salts are photochemically reduced in the histological preparations. At this low temperature very little staining of the protein structure of the tissue takes place. Silver ions adsorbed by the tissue can be removed by treatment with a sodium nitrate solution. About 2/3 of the brown material in the histological preparations of cerebral cortex was due to the chloride in the tissue, 1/6 to the phosphate, 1/10 to an unidentified (probably organic) anion, and 1/20 to bicarbonate. When the alcoholic silver nitrate solution used for the fixation is acidified, or the sections are treated with nitric acid, the colored material consists of reduced silver chloride only. A comparison of the light absorption in histological preparations of cortex treated with neutral and with acid solutions supported the conclusion that about 2/3 of the colored material in the tissue is reduced silver chloride.  相似文献   

2.
Acids and weak complexing agents (pK less than 8) are not able to remove, without leaving a residue, silver bound to biological tissues by ionic or complex bonds ("reducible" silver), whereas, strong complexing agents (pK greater than 8) can also partially or completely dissolve metallic silver formed under the influence of reducing groups in the tissue. For this reason, the chemical nature of the silver contained in tissue sections, be it metallic or reducible, must not be determined on the basis of solubility tests; moreover, the amount of neither of the two above fractions can be determined by removing the other with any kind of washing. Using radioactive impregnating baths, radioactive silver bound to the tissue as reducible silver can be replaced in a quantitative manner with inactive silver ions by means of a one-hour incubation in 1% inactive silver nitrate dissolved in 10% acetic acid, but the radioactive silver existing in reduced (atomic) state will be left unaffected. Consequently, radioactivity remaining in the tissue after the above treatment represents metallic silver. The amount of reducible silver can be calculated by subtracting that of the metallic silver from the total silver content of the sections.  相似文献   

3.
Summary Acids and weak complexing agents (pK<8) are not able to remove, without leaving a residue, silver bound to biological tissues by ionic or complex bonds (reducible silver), whereas, strong complexing agents (pK>8) can also partially or completely dissolve metallic silver formed under the influence of reducing groups in the tissue. For this reason, the chemical nature of the silver contained in tissue sections, be it metallic or reducible, must not be determined on the basis of solubility tests; moreover, the amount of neither of the two above fractions can be determined by removing the other with any kind of washing. Using radioactive impregnating baths, radioactive silver bound to the tissue as reducible silver can be replaced in a quantitative manner with inactive silver ions by means of a one-hour incubation in 1% inactive silver nitrate dissolved in 10% acetic acid, but the radioactive silver existing in reduced (atomic) state will be left unaffected. Consequently, radioactivity remaining in the tissue after the above treatment represents metallic silver. The amount of reducible silver can be calculated by subtracting that of the metallic silver from the total silver content of the sections.  相似文献   

4.
Summary An investigation was carried out to determine the nature of the precipitate in a technique which was originally proposed by Golgi and, later, modified by Cox, to stain nerve cells by the treatment of tissue with potassium dichromate and mercuric chloride.The approach was a twofold one: the study of the patterns of X-ray diffraction of successfully impregnated tissue and the analysis of electron diffraction patterns of selected areas of tissue where impregnated structures were observed.Evidence has been obtained that the precipitate, prior to the final alkalinization process, is mercurous chloride (calomel, Hg2Cl2). There appears to be no formation, at any time, of mercurous or mercuric chromate. The mercurous chloride is topographically associated exclusively with the presence of stained structures and cannot be detected in the non-stained background.Following the alkalinizing process necessary for the final darkening of the stained structures, the X-ray diffraction pattern of mercurous chloride usually was no longer detectable. It appears reasonable to assume that, when no crystalline compounds can be detected, metallic liquid mercury is formed.This study was supported by U.S. P.H.S. Grant NS 07998 and by the Medical Research Council of Canada. We are indebted to Mrs. K. Sörensen and Mr. A. Meier for technical assistance.  相似文献   

5.
Summary A study of the mechanisms involved in silver staining of blood vessels has been performed on the rabbit and rat aorta and vena cava, both in fixed and unfixed states. Pretreatment with cationic detergents, organic solvents, and solutions containing free iodide ions inhibited the silver staining. Anionic or neutral detergents, oxidizing agents, binders of such ions as Ca++, Mg++ and SO 4 - failed to inhibit the staining. Staining of the intercellular gaps between endothelial cells and between smooth muscle cells could also be obtained if vessels were treated with a cationic detergent and bromocresol green, or by a modified Hale's colloidal iron technique. Silver lines could be returned to dechlorinated vessels, if treated with sodium chloride before silver nitrate staining, but not vice versa; by an extended treatment with dilute silver nitrate or with gold chloride following normal silver nitrate staining; and by treatment with heparin prior to silver staining. Dark chamber experiments have demonstrated that a photographic developer can take the place of light in the silver staining procedure and that a photographic fixer has the same effect on vessel silver staining as dechlorination.The obtained results have led to the hypothesis that silver staining of vessels occurs in two stages. In the first silver ions from silver nitrate are bound by polyanions located primarily in the intercellular gaps, and then reduced. This produces a network of reduced silver grains which, however, are still too sparsely aggregated to be visualized. Chloride ions in the tissues also bind and precipitate silver ions preventing their removal in subsequent rinsing procedures. In the second stage light (or a photographic developer) reduces the silver ions in silver chloride, producing a visible accumulation of metallic silver, but only around the silver grains reduced during the first stage, analogous to the photographic process.The possible existence and function of an intercellular cement substance is discussed in light of the evidence for the presence of polyanionic groups in the intercellular gaps.  相似文献   

6.
To clarify tthe mechanism by which local application of silver compounds protects burns against infection, an ion-specific electrode was used to measùre the concentration of silver ions in solutions. By this method it was shown that in burn dressings silver ions were reduced to a very low level by precipitation as silver chloride. The antibacterial effect was found to depend on the availability of silver ions from solution in contact with precipitate. Between 10-5 and 10-6 molar silver nitrate solution in water was rapidly bactericidal. The minimal amount of silver nitrate causing inhibition of respiration of skin in tissue culture was about 25 times the minimal concentration of silver nitrate that inhibited growth of Pseudomonas aeruginosa.  相似文献   

7.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

8.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

9.
Summary Golgi impregnation of nerve tissue can be obtained by soaking the tissue in a solution of potassium dichromate followed by a solution of mercurous or mercuric nitrate. The precipitate formed in each of these two methods has been identified. Samples of impregnated tissues were ground and examined with X-ray powder diffraction and the patterns of spacings compared both with the values of international tables (the ASTM index) and with the results of X-ray studies of substances prepared by ourselves and subjected to quantitative chemical analysis. It was found that impregnated blocks contained mercurous chromate, Hg2CrO4, after mercurous nitrate treatment, and mercuric oxide chromate, Hg3O2CrO4, after mercuric nitrate treatment. Selected area electron diffraction of ultrathin sections through impregnated nervous structures (embedded in epoxy resin) showed these to contain the substances demonstrated by X-ray analysis of whole tissue.This study was supported by U. S. P. H. S. Grant NS 07998. This aid is gratefully acknowedged. We are indebted to Mrs. E. Clausen, Mrs. K. Kirkholt, Mr. A. Meier and Mrs. K. Sörensen for technical assistance.Institute of Geology, Aarhus University, Aarhus, Denmark.We are indebted to him for the possibility of basing some of our studies on his results.  相似文献   

10.
Cytological staining with silver nitrate was used in order to study the activity of the nucleolar organizer regions (NORs) in metaphase figures from human lymphocytes exposed to mercury chloride and actinomycin D. The cells were exposed to both compounds either during G1-early S phase, allowing recovery after the exposure, or from G1 until harvest; no recovery was thus allowed in the latter case. HgCl2 as well as actinomycin D did not influence the silver staining of the acrocentric chromosomes on metaphases. As actinomycin D is known to be an inhibitor of rRNA, as for example confirmed by inhibition of silver staining on interphase cells, our results on metaphase chromosomes indicate that AgNO3 precipitation, although being a good indicator for nucleolar activation, is not adequate in case of inactivation.  相似文献   

11.
Deterioration of Golgi impregnation begins immediately after impregnated tissue blocks are sectioned with the Vibratome. The first signs of deterioration are fading of delicate impregnated processes, the disruption and fragmentation of dendrites, and, eventually, fading of entire neurons. These changes can be prevented by stabilization, i.e., by converting the water soluble silver chromate Golgi precipitate into metallic silver or by replacing the silver with some other dense, insoluble material. A technique is described using photographic developers to treat Vibratome sections containing Golgi-rapid or Golgi-Kopsch impregnated CNS neurons. In this way part of the silver chromate Golgi precipitate is reduced to metallic silver, and the remaining silver chromate is then removed with sodium thiosulfate. Of the various developers tested, Kodalith and Elon-ascorbic acid gave the best results, with excellent stabilization of the most delicate stuctures, such as the stalks of dendritic spines and finely woven axonal plexuses. Treatment with other developers (HC-110, Neutol, D-19, D-76, D-163, Kodak Universal, Rodinal, Atomal, Diafine, Eukobrom, Microdol-X) resulted in stabilization ranging from good to poor. Good stabilization of Golgi impregnation could also be achieved by first exposing the sections to sodium bromide (bromide substitution) followed by treatment with D-19, Kodalith, Elon-ascorbic acid or HC-110. After stabilization, the sections can be counterstained with aqueous cresyl violet or with alcoholic thionin without degradation of the stabilized Golgi image. The countentain permits exact determination of the position of impregnated neurons in cortical layers or subcortical nuclei.  相似文献   

12.
Deterioration of Golgi impregnation begins immediately after impregnated tissue blocks are sectioned with the Vibratome. The first signs of deterioration are fading of delicate impregnated processes, the disruption and fragmentation of dendrites, and, eventually, fading of entire neurons. These changes can be prevented by stabilization, i.e., by converting the water soluble silver chromate Golgi precipitate into metallic silver or by replacing the silver with some other dense, insoluble material. A technique is described using photographic developers to treat Vibratome sections containing Golgi-rapid or Golgi-Kopsch impregnated CNS neurons. In this way part of the silver chromate Golgi precipitate is reduced to metallic silver, and the remaining silver chromate is then removed with sodium thiosulfate. Of the various developers tested, Kodalith and Elon-ascorbic acid gave the best results, with excellent stabilization of the most delicate structures, such as the stalks of dendritic spines and finely woven axonal plexuses. Treatment with other developers (HC-110, Neutol, D-19, D-76, D-163, Kodak Universal, Rodinal, Atomal, Diafine, Eukobrom, Microdol-X) resulted in stabilization ranging from good to poor. Good stabilization of Golgi impregnation could also be achieved by first exposing the sections to sodium bromide (bromide substitution) followed by treatment with D-19, Kodalith, Elon-ascorbic acid or HC-110. After stabilization, the sections can be counterstained with aqueous cresyl violet or with alcoholic thionin without degradation of the stabilized Golgi image. The counterstain permits exact determination of the position of impregnated neurons in cortical layers or subcortical nuclei.  相似文献   

13.
Based on experiments on agarose gels and tissue, a procedure has been developed which greatly improves the sensitivity and the specifity of the Kossa method for demonstrating calcium in tissue. Tissue calcium is immobilized by acetonic oxalic acid, which simultaneously removes the other sorts of anions capable of precipitating silver ions (e.g. phosphate, carbonate). The resulting submicroscopic grains of calcium oxalate are converted first into silver oxalate then into metallic silver by a treatment with silver nitrate followed by an ultra-violet irradiation (Kossa reaction). These submicroscopic metallic silver grains are enlarged up to microscopic visibility by means of physical development, which makes the staining highly sensitive. Co-staining of the argyrophil sites in the tissue is totally suppressed by various tricks, which render the silver staining selective for calcium.  相似文献   

14.
A method for light and electron microscopic demonstration of mercury sulfides and mercury selenides in mammalian tissue is presented. Silver ions adhering to the surface of submicroscopic traces of mercury sulfides or selenides in the tissue are reduced to metallic silver by hydroquinone. Physical development thereupon renders deposits of mercury sulfides or mercury selenide visible as spheres of solid silver. Examples of localization of mercury in the central nervous system and various organs from animals exposed to mercury chloride or methyl mercury chloride with or without additional sodium selenide treatment are presented. Selenium treatment results in a considerable increase in the amount of mercury that can be made visible by silver amplification. After mercury chloride treatment, most of the mercury is localized in lysosomes and is only rarely seen in secretory granules. After simultaneous selenium treatment, mercury is also found in nuclei of proximal tubule cells in the kidney and in macrophages. The "sulfide-osmium" method for ultrastructural localization of mercury suggested by Silberberg, Lawrence, and Leider (Arch Environ Health 19:7, 1969) and the light microscopic method using a photographic emulsion suggested by Umeda, Saito, and Saito (Jpn J Exp Med 39:17, 1969) have been experimentally analyzed and commented on.  相似文献   

15.
Summary Several factors that may affect induction of somatic embryogenesis in loblolly pine (Pinus taeda L.) were investigated in 1994 and 1995. Megagametophytes containing immature zygotic embryos were excised from seeds as explants. Potassium chloride, silver nitrate, myo-inositol, coconut water, or polyamine was added to the control media (U.S. patent no. 5,036,007) to determine the effects of each single ingredient or their combinations on the initiation of embryogenic tissue. Supplements of myo-inositol at 22.2 mM resulted in increases in frequencies of cell mass extrusion and proliferation compared with the control media in consecutive years. Addition of silver nitrate showed the potential to promote initiation of embryogenic culture. The combination of 10 mM potassium with 29.4 μM silver nitrate achieved the highest frequencies in both extrusion and proliferation of embryogenic tissue. The combination of silver nitrate at 29.4 μM with addition of myo-inositol at 11.1 or 22.2 mM achieved a higher conversion rate from extrusion to proliferation. Polyamine did not significantly affect the induction of somatic embryogenesis, but coconut water was inhibitory. Published with approval of the Director of Arkansas Agricultural Experimental Station.  相似文献   

16.
Two procedures were used to modify gauze bandages, polyester sutures, silicone tubing, and polyvinyl chloride tubing. In one procedure, the materials were first modified by in situ precipitation of metallic hydroxides and then used to adsorb silver ions. In the second procedure, the materials were soaked in sodium pyrophosphate or sodium chloride, dried, and then soaked in silver nitrate. These procedures produced materials with silver deposited on the surface of the tubing and sutures and both on the surface and within the gauze fibers. The modified materials inhibited the growth of Pseudomonas aeruginosa. Escherichia coli, and Staphylococcus aureus in vitro.  相似文献   

17.
The simultaneous determination by capillary ion electrophoresis of nitrate and nitrite in wastewaters with chloride concentrations of 15 to 23g/l is described. Chloride concentrations over 200mg/l hampered the determination; thus, lead, mercuric and silver acetate were used to precipitate chloride. Silver acetate added in 1.5 times the stoichiometric amount for AgCl formation gave the best results in terms of nitrate and nitrite peak resolution.  相似文献   

18.
1. Aoyama's silver impregnation method for the Golgi apparatus has been used on exocrine cells of the pancreas of the mouse and studied by electron microscopy in order to determine as precisely as possible where the silver is deposited. Similar cells have also been fixed in buffered osmium tetroxide solution and compared with cells treated by the silver technique. 2. Examination of the Aoyama preparations usually revealed a light deposition of silver in the cytoplasm (hyaloplasm or matrix) and a heavy deposition of silver around a series of closely apposed vacuoles. The heavy deposition of silver was regarded as revealing the chromophilic region of the Golgi apparatus while the vacuoles were identified as the chromophobic component. 3. Comparison of the silver preparations with those fixed in buffered osmium tetroxide solution showed that the silver was primarily deposited in the region of the Golgi membranes.  相似文献   

19.
1. Aoyama's silver impregnation method for the Golgi apparatus has been used on exocrine cells of the pancreas of the mouse and studied by electron microscopy in order to determine as precisely as possible where the silver is deposited. Similar cells have also been fixed in buffered osmium tetroxide solution and compared with cells treated by the silver technique. 2. Examination of the Aoyama preparations usually revealed a light deposition of silver in the cytoplasm (hyaloplasm or matrix) and a heavy deposition of silver around a series of closely apposed vacuoles. The heavy deposition of silver was regarded as revealing the chromophilic region of the Golgi apparatus while the vacuoles were identified as the chromophobic component. 3. Comparison of the silver preparations with those fixed in buffered osmium tetroxide solution showed that the silver was primarily deposited in the region of the Golgi membranes.  相似文献   

20.
The effect of cobalt chloride, salicylic acid, and silver nitrate for embryogenesis was studied in in vitro cultures of Coffea canephora. Murashige and Skoog (in Physiol. Plant. 15:473–497, 1962) medium containing 20 and 40 μM either of cobalt chloride, silver nitrate, or salicylic acid supplemented with 1.1 μM N 6 benzyladenine and 2.85 μM indole-3-acetic acid was used for the study. At 20 and 40 μM silver nitrate treatment, 35–48% explants responded for embryogenesis, and 38 ± 7 and 153 ± 27 embryos were produced from each callus mass, respectively, whereas only 5% control explants responded on medium devoid of silver nitrate, cobalt chloride, or salicylic acid. Secondary embryogenesis was observed in 70–90% of the explants, and around 100–150 embryos were produced from each explant cultured on a medium containing silver nitrate, and only a 3% response was noticed in control embryo explants. Yellow friable embryogenic calluses were obtained from the cut edges of most of the tissues grown in a medium supplemented with cobalt chloride. The results clearly demonstrated that, among the tested ethylene inhibitors, silver nitrate is very effective in reprogramming the cellular machinery toward embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号