首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological effects of salmon lice infections on post-smolt of Atlantic salmon were examined by experimentally infecting hatchery reared post-smolts with infective copepodids. Even at high infection intensities, ranging from 30–250 lice per fish, early chalimus stages did not have severe, physiological effects on the fish. There was a sudden increase in fish mortality after the appearance of preadult I stages. Infected fish were then suffering due to lesions and osmoregulatory failure. Plasma chloride level increased significantly and total protein, albumin and haematocrit decreased significantly in infected compared to uninfected fish. All infected fish became moribund before adult lice appeared. Infection intensities above 30 salmon lice larvae per fish thus appear to cause death of Atlantic salmon post-smolt soon after the lice reach their pre-adult stage.  相似文献   

2.
Adult and mobile preadult sea lice Lepophtheirus salmonis were incubated with mucus samples from rainbow trout (Oncorhynchus mykiss), coho salmon (O. kisutch), Atlantic salmon (Salmo salar), and winter flounder (Pseudopleuronectes americanus) to determine the response of L. salmonis to fish skin mucus as assessed by the release of proteases and alkaline phosphatase. There was variation in the release of respective enzymes by sea lice in response to different fish. As well, sealice collected from British Columbia responded differently than New Brunswick sea lice to coho salmon mucus. Fish mucus and seawater samples were also analyzed using protease gel zymography to observe changes in the presence of low molecular weight (LMW) proteases after L. salmonis incubation. Significantly higher proportions of sea lice secreted multiple bands of L. salmonis-derived LMW proteases after incubation with rainbow trout or Atlantic salmon mucus in comparison with seawater, coho salmon, or winter flounder mucus. Susceptibility to L. salmonis infections may be related to the stimulation of LMW proteases from L. salmonis by fish mucus. The resistance of coho salmon to L. salmonis infection may be due to agents in their mucus that block the secretion of these LMW proteases or factors may exist in the mucus of susceptible species that stimulate their release.  相似文献   

3.
The changes in the activities of mucus hydrolytic enzymes and plasma cortisol levels were examined following infection of Atlantic salmon Salmo salar with the salmon louse Lepeophtheirus salmonis and these changes were compared with those resulting from elevated plasma cortisol. Salmon were infected at high (Trial 1; 178 +/- 67) and low (Trial 2; 20 +/- 13) numbers of lice per fish and the activities of proteases, alkaline phosphatase, esterase and lysozyme in the mucus, as well as plasma cortisol levels were determined. At both levels of infection, there were significant increases of protease activity over time (1-way K-WANOVA; Trial 1, p = 0.004; Trial 2, p < 0.001). On several sampling days, generally on later days in the infections, the mucus protease activities of infected fish were significantly higher than control fish (Student's t-tests; p < 0.05). In addition, zymography experiments demonstrated bands of proteases at 17 to 22 kDa in the mucus of infected salmon that were absent in the mucus from non-infected fish and absent in the plasma of salmon. The intensity of these protease bands increased in the mucus over the course of both infections. However, plasma cortisol levels were elevated only in the heavily infected fish from the first trial. At high infection levels (Trial 1), alkaline phosphatase activity was higher in the mucus of infected fish at all days (t-test, p < 0.05). However, at the lower infection level (Trial 2), the mucus alkaline phosphatase activity did not differ significantly between infected and non-infected fish. Esterase and lysozyme activities were very low and did not change with time nor between non-infected and infected salmon in either challenge. Mucus enzyme activities of cortisol-implanted salmon did not change over time, nor were there any differences in activities between cortisol-implanted and control salmon. The present study demonstrates biochemical changes resulting from sea lice infection of Atlantic salmon occurring at the site of host-pathogen interaction, the mucus layer. However, the origin of these enzymes, whether host or pathogen, remains to be determined.  相似文献   

4.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

5.
The mucus protein profile of Atlantic salmon (Salmo salar) and changes due to infection with sea lice (Lepeophtheirus salmonis) were examined. Two-dimensional gel electrophoresis was performed on salmon skin mucus and comparisons between control and infected fish mucus were made. LC MS/MS identified intracellular proteins, calmodulin, actin, and hemopexin and plasma proteins, such as apolipoproteins, lectin, plasminogen and transferrin. Plasma proteins in the mucus may result from either direct expression by epidermal cells, leakage of plasma or via a secondary circulation system. Therefore, RT-PCR was used to measure mRNA of transferrin and lectin in Atlantic salmon skin. Transferrin expression was observed suggesting direct expression by the epidermis. Lectin expression was not detected suggesting another mechanism of entry into mucus, either leakage from plasma or secondary circulation. The lack of observable albumin on 2D gels, suggests that mucus lectin may arise from the secondary circulation route. Interestingly, β-actin was a significant component of Atlantic salmon mucus. Cleaved actin and transferrin fragments were observed and positively correlated with sea lice infection suggestive of proteolytic activity. Increased levels of cleaved transferrin during sea lice infection may activate the nitrous oxide response of salmon macrophages, as part of the fish's immune response to sea lice infection.  相似文献   

6.
Physiological, immunological and biochemical parameters of blood and mucus, as well as skin histology, were compared in 3 salmonid species (rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon O. kisutch) following experimental infection with sea lice Lepeophtheirus salmonis. The 3 salmonid species were cohabited in order to standardize initial infection conditions. Lice density was significantly reduced on coho salmon within 7 to 14 d, while lice persisted in higher numbers on rainbow trout and Atlantic salmon. Lice matured more slowly on coho salmon than on the other 2 species, and maturation was slightly slower on rainbow trout than on Atlantic salmon. Head kidney macrophages from infected Atlantic salmon had diminished respiratory burst and phagocytic capacity at 14 and 21 d post-infection (dpi), while infected rainbow trout macrophages had reduced respiratory burst and phagocytic capacities at 21 dpi, compared to controls. The slower development of lice, coupled with delayed suppression of immune parameters, suggests that rainbow trout are slightly more resistant to lice than Atlantic salmon. Infected rainbow trout and Atlantic salmon showed increases in mucus lysozyme activities at 1 dpi, which decreased over the rest of the study. Mucus lysozyme activities of infected rainbow trout, however, remained higher than controls over the entire period. Coho salmon lysozyme activities did not increase in infected fish until 21 dpi. Mucus alkaline phosphatase levels were also higher in infected Atlantic salmon compared to controls at 3 and 21 dpi. Low molecular weight (LMW) proteases increased in infected rainbow trout and Atlantic salmon between 14 and 21 dpi. Histological analysis of the outer epithelium revealed mucus cell hypertrophy in rainbow trout and Atlantic salmon following infection. Plasma cortisol, glucose, electrolyte and protein concentrations and hematocrit all remained within physiological limits for each species, with no differences occurring between infected and control fish. Our results demonstrate that significant differences in mucus biochemistry and numbers of L. salmonis occur between these species.  相似文献   

7.
Parasites rely on resources from a host and are selected to achieve an optimal combination of transmission and virulence. Human‐induced changes in parasite ecology, such as intensive farming of hosts, might not only favour increased parasite abundances, but also alter the selection acting on parasites and lead to life‐history evolution. The trade‐off between transmission and virulence could be affected by intensive farming practices such as high host density and the use of antiparasitic drugs, which might lead to increased virulence in some host–parasite systems. To test this, we therefore infected Atlantic salmon (Salmo salar) smolts with salmon lice (Lepeophtheirus salmonis) sampled either from wild or farmed hosts in a laboratory experiment. We compared growth and skin damage (i.e. proxies for virulence) of hosts infected with either wild or farmed lice and found that, compared to lice sampled from wild hosts in unfarmed areas, those originating from farmed fish were more harmful; they inflicted more skin damage to their hosts and reduced relative host weight gain to a greater extent. We advocate that more evolutionary studies should be carried out using farmed animals as study species, given the current increase in intensive food production practices that might be compared to a global experiment in parasite evolution.  相似文献   

8.
A synthesis of results from two projects was assessed to analyse possible influence of sea lice Lepeophtheirus salmonis on marine Atlantic salmon Salmo salar survival. During the years 1992–2004, trawling for wild migrating post-smolts was performed in Trondheimsfjord, a fjord in which no Atlantic salmon aquaculture activity is permitted. Prevalence and intensity of sea lice infections on migrating wild post-smolts differed between years. A correlation analysis between 1 sea-winter (SW) Atlantic salmon catch statistics from the River Orkla (a Trondheimsfjord river) and sea lice infections on the migrating smolts in the Trondheimsfjord was not significant. Up to 2% reduction in adult returns due to sea-lice infection was expected. In addition, experimental releases from 1996 to 1998 with individually tagged groups of hatchery-reared Atlantic salmon smolts given protection against sea-lice infection was performed. Higher recaptures of adult Atlantic salmon from 1998 treated smolts compared to the control group may correspond to high abundance of sea lice found on the wild smolt, and may indicate influence on post-smolt mortality. These studies indicate that post-smolt mortality in Trondheimsfjord is marginally influenced by sea lice infection; however, the methods for assessing wild smolt mortality might be insufficient. Higher infections of sea lice farther out in the fjord may indicate more loss in Atlantic salmon returns in some years.  相似文献   

9.
The behaviour of lumpfish, Cyclopterus lumpus L., in sea pens, with and without Atlantic salmon, Salmo salar L., present, was assessed by underwater camera technology. Behaviour was classified by recording the principal activity of individual fish for 30-s intervals. The majority of daylight time was spent actively foraging for food. Antagonistic behaviour between Atlantic salmon and lumpfish was not observed during the whole experimental period and no mortality was seen in either species. Cleaning behaviour, but at low frequency, was observed as lumpfish cleaned sea lice off Atlantic salmon. Significantly lower sea lice infection levels were seen on Atlantic salmon when reared together with lumpfish compared to the control group without lumpfish. Feeding behaviour can be classified as strongly opportunistic.  相似文献   

10.
Infectious pancreatic necrosis (IPN) virus (IPNV) infection in Atlantic salmon Salmo salar L. post-smolts and its influence on the outcome of secondary infections with infectious salmon anaemia (ISA) virus (ISAV) or Vibrio salmonicida were studied. The infections with ISAV or V salmonicida were performed both in a period of acute IPN and in the following IPNV carrier stage, 3 and 6 to 8 wk after experimental IPNV challenge, respectively. An IPNV carrier condition at low virus titre did not influence the mortality rates after secondary infections. Neither the ISAV infection nor the V. salmonicida infection in experimentally induced IPNV carriers resulted in mortalities different from those observed after challenge of IPNV-free fish. At higher IPNV titres in Atlantic salmon with acute IPN, the outcome of secondary infections was quite different from that observed in IPNV-free fish and in IPNV carriers. In 2 different experiments significantly more fish died when fish with acute IPN were infected with V salmonicida than when fish were infected with V salmonicida alone. Mortality also started earlier in the double-infected group than in the group challenged with V. salmonicida alone, 3 to 4 and 8 d after V salmonicida infection, respectively. Similar results were observed independent of whether mortalities due to IPN alone were registered in the experiments. When Atlantic salmon with acute IPN were infected with ISAV, significantly fewer fish died than when fish were infected with ISAV alone. The ongoing IPNV infection seemed to provide some protection against development of ISA.  相似文献   

11.
Physiological impact of sea lice on swimming performance of Atlantic salmon   总被引:6,自引:0,他引:6  
Atlantic salmon Salmo salar were infected with two levels of sea lice Lepeophtheirus salmonis (0·13 ± 0·02 and 0·02 ± 0·00 sea lice g−1). Once sea lice became adults, the ventral aorta of each fish was fitted with a Doppler cuff to measure cardiac output ( ̇ ), heart rate ( f H) and stroke volume ( V S) during swimming. Critical swimming speeds ( U crit) of fish with higher sea lice numbers [2·1 ± 0·1 BL (body lengths) s−1] were significantly lower ( P  < 0·05) than fish with lower numbers (2·4 ± 0·1 BL s−1) and controls (sham infected, 2·6 ± 0·1 BL s−1). After swimming, chloride levels in fish with higher sea lice numbers (184·4 ± 11·3 mmol l−1) increased significantly (54%) from levels at rest and were significantly higher than fish with fewer lice (142·0 ± 3·7 mmol l−1) or control fish (159·5 ± 3·5 mmol l−1). The f H of fish with more lice was 9% slower than the other two groups at U crit. This decrease resulted in ̇ not increasing from resting levels. Sublethal infection by sea lice compromised the overall fitness of Atlantic salmon. The level of sea lice infection used in the present study was lower than has previously been reported to be detrimental to wild Atlantic salmon.  相似文献   

12.
A bioassay for sea lice Lepeophtheirus salmonis sensitivity towards emamectin benzoate (EMB) was validated for field use. A probit regression model with natural responsiveness was used for the number of affected (moribund or dead) sea lice in bioassays involving different concentrations of EMB. Bioassay optimization included an evaluation of the inter-rater reliability of sea lice responsiveness to EMB and an evaluation of gender-related differences in susceptibility. Adoption of a set of bioassay response criteria improved the concordance (evaluated using the concordance correlation coefficient) between raters' assessments and the model estimation of EC50 values (the 'effective concentration' leading to a response of 50% of the lice not prone to natural response). An evaluation of gender-related differences in EMB susceptibility indicated that preadult stage female sea lice exhibited a significantly larger sensitivity towards EMB in 12 of 19 bioassays compared to preadult males. In order to evaluate sea lice sensitivity to EMB in eastern Canada, the intensive salmon farming area in the Bay of Fundy in southwestern New Brunswick was divided into 4 distinct regions based on industry health management practices and hydrographics. A total of 38 bioassays were completed from 2002 to 2005 using populations of preadult stage sea lice collected from Atlantic salmon Salmo salar farms within the 4 described regions. There was no significant overall effect of region or year on EC50 values; however, analysis of variance indicated a significant effect of time of year on EC50 values in 2002 and a potential effect in 2004 to 2005. Although the range of EC50 values obtained in this 3 yr study did not appear sufficient to affect current clinical success in the control of sea lice, the results suggest a seasonal- or temperature-associated variation in sensitivity to EMB. This will need to be considered if changes in EMB efficacy occur in the future.  相似文献   

13.
14.
To better understand the role of vector transmission of aquatic viruses, we established an in vivo virus-parasite challenge specifically to address (1) whether Lepeophtheirus salmonis can acquire infectious haematopoietic necrosis virus (IHNV) after water bath exposure or via parasitizing infected Atlantic salmon Salmo salar and if so, define the duration of this association and (2) whether L. salmonis can transmit IHNV to naive Atlantic salmon and whether this transmission requires attachment to the host. Salmon lice which were water bath-exposed to 1 x 10(5) plaque-forming units (pfu) ml(-1) of IHNV for 1 h acquired the virus (2.1 x 10(4) pfu g(-1)) and remained IHNV-positive for 24 h post exposure. After parasitizing IHNV-infected hosts (viral titer in fish mucus 3.3 x 10(4) pfu ml(-1)) salmon lice acquired IHNV (3.4 x 10(3) pfu g(-1)) and remained virus-positive for 12 h. IHNV-positive salmon lice generated through water bath exposure or after parasitizing infected Atlantic salmon successfully transmitted IHNV, resulting in 76.5 and 86.6% of the exposed Atlantic salmon testing positive for IHNV, respectively. In a second experiment, only salmon lice that became IHNV-positive through water bath exposure transmitted IHNV to 20% of the naive fish, and no virus was transmitted when IHNV-infected salmon lice were cohabitated but restrained from attaching to naive fish. Under laboratory conditions, adult L. salmonis can acquire IHNV and transmit it to naive Atlantic salmon through parasitism. However, the ephemeral association of IHNV with L. salmonis indicates that the salmon louse act as a mechanical rather than a biological vector or reservoir.  相似文献   

15.
The efficacy of teflubenzuron (Calicide) for the treatment of farmed Atlantic salmon Salmo salar L. infested with sea lice Lepeophtheirus salmonis (Kr?yer, 1838), was investigated at low water temperatures in 2 commercial salmon farms. Calicide, coated on commercial feed pellets, was administered orally at 10 mg kg(-1) d(-1) for 7 consecutive days. Fish were randomly sampled and lice numbers recorded from both treated and control groups on 3 or 4 sampling occasions post-medication. Statistically significant reductions in the number of L. salmonis per fish were recorded. Maximum efficacy was observed toward chalimus and preadult stages of L. salmonis, and was achieved approximately 26 d post-medication. No adverse drug reactions or palatability problems were associated with the treatments.  相似文献   

16.
A surging interest in the evolution of consistent trait correlations has inspired research on pigment patterns as a correlate of behavioural syndromes, or "animal personalities". Associations between pigmentation, physiology and health status are less investigated as potentially conserved trait clusters. In the current study, lice counts performed on farmed Atlantic salmon Salmo salar naturally infected with ectoparasitic sea lice Lepeophtheirus salmonis showed that individual fish with high incidence of black melanin-based skin spots harboured fewer female sea lice carrying egg sacs, compared to less pigmented fish. There was no significant association between pigmentation and lice at other developmental stages, suggesting that host factors associated with melanin-based pigmentation may modify ectoparasite development to a larger degree than settlement. In a subsequent laboratory experiment a strong negative correlation between skin spots and post-stress cortisol levels was revealed, with less pigmented individuals showing a more pronounced cortisol response to acute stress. The observation that lice prevalence was strongly increased on a fraction of sexually mature male salmon which occurred among the farmed fish further supports a role for steroid hormones as mediators of reduced parasite resistance. The data presented here propose steroid hormones as a proximate cause for the association between melanin-based pigmentation and parasites. Possible fundamental and applied implications are discussed.  相似文献   

17.
Atlantic salmon salmo salar smolts of wild, hybrid and farmed parentage were individually tagged then reared in a sea cage for 8 months. The fish were sampled three times during this period. On all occasions, farmed Atlantic salmon displayed the highest abundance and density of sea lice Lepeophtheirus salmonis , whilst no significant differences were observed between hybrid and wild Atlantic salmon. Percentage variation between the lowest and highest infected groups was as high as 175 and 144% for L. salmonis abundance and density respectively (sample 2). The temporal stability of interindividual sea lice infection levels was investigated pair‐wise between samples using correlation (sample 1 v . 2, 1 v . 3 and 2 v . 3). When calculated using sea louse abundance, correlations ranged from r 2 = 0·11, P  < 0·01 to r 2 = 0·39, P  < 0·001, but, when the effects of fish size were controlled for by converting abundance to density, all correlations were <  r 2 = 0·1. Therefore, these data indicate that a fish's relative infection level in one sample was a weak predictor of its relative infection level in another sample. This suggests that identification of individual Atlantic salmon that display reduced susceptibility to sea lice, may be problematic.  相似文献   

18.
In studies of the salmon louse Lepeophtheirus salmonis (Kr?yer, 1837), experimental design is complicated by a highly variable and unpredictable lice loss among common experimental tanks and a substantial rate of host transfer within tanks. When fish hosting L. salmonis are maintained in individual tanks, unspecific effects such as host transfer, louse predation by cohabitant hosts and agonistic host interactions are excluded. This study suggests that it is possible to maintain Atlantic salmon Salmo salar infected with L. salmonis in an array of small, single fish tanks and, by doing so, provide an experimental system in which the loss of motile pre-adult and adult stages of L. salmonis is predictable. Here, lice can be collected shortly after detachment for detailed studies or to provide mortality curves of lice from individual fish. This represents an experimental approach improving precision in studies of L. salmonis, such as drug and vaccine efficacy assays, RNA interference (RNAi) studies and host-parasite interactions. The natural loss of pre-adult/adult L. salmonis from the system was higher for males than females. The loss of females appeared to be a process somewhat selective against large individuals. Inherent qualities of the host appeared to be of little significance in explaining the variability in loss of preadult/adult lice.  相似文献   

19.
Salmon lice Lepeophtheirus salmonis Kr?yer have caused disease problems in farmed Atlantic salmon Salmo salar L. since the mid-1970s in Norway. High infection intensities and premature return of wild sea trout Salmo trutta L. were first reported in 1992. Later emaciated wild Atlantic salmon smolts carrying large amounts of lice have been observed both in fjords and offshore. The Norwegian Animal Health Authority regulations to control the problem, which came into operation in 1998, included compulsory louse level monitoring in farms and maximum legal numbers of lice per fish. Here, we present a model of salmon louse egg production in Norway and show that the effect of the current public management strategy is critically dependent on the yearly increase in salmon production. This is because the infection pressure is the product of the number of fish in the system, and the number of lice per fish. Due to the much larger number of farmed than wild salmonids, it is highly likely that lice originating from farmed salmon infect wild stock. Estimated tolerance limits for wild salmonids vary widely, and the level of louse egg production in farms which would be needed to decimate wild populations is not known. Two possible thresholds for total lice egg production are investigated: (1) 1986 to 1987 level (i.e. before adverse effects on sea trout were recorded), and (2) a level corresponding to a doubling of the estimated natural infection pressure. The farm lice per fish limits that would have to be observed to keep louse production within the 2 thresholds are calculated for the period 1986 to 2005. A steady decrease in the permitted number of lice per fish may keep the total louse production stable, but the number of salmon required for verification of lice numbers will increase as the prevalence to be verified is decreased. At threshold (2), the model estimated that lice limits should have been 0.05 louse per fish in 1999. This would require 60 fish from each pen to be collected, anaesthetised and examined for a good estimate at a confidence level of 95%. Such sample numbers are likely to be opposed by farmers. The use of national delousing programs to solve the problem is discussed.  相似文献   

20.
Cleaning interactions have been described in a wide range of fish species and other taxa. We observed a novel cleaning behaviour during a study of the transmission dynamics of sea lice (Lepeophtheirus salmonis) between juvenile pink salmon (Oncorhynchus gorbuscha) and threespine sticklebacks (Gasterosteus aculeatus) in the Broughton Archipelago, British Columbia, Canada. Experiments showed that sticklebacks significantly reduced the number of sea lice on individual juvenile salmon. Adult female lice were preferentially consumed by sticklebacks, and gravid female lice also experienced egg string cropping. Overall, 76% of gravid female lice experienced either consumption, egg string cropping, or both by sticklebacks. This preference by sticklebacks for female parasites may stem from female lice being larger than males and the added nutritional value of egg strings on gravid females. Cleaning by sticklebacks can potentially have an impact on sea louse populations on wild juvenile salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号