首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary Detailed restriction enzyme analysis of the DNA from a Chinese female showed that one of her chromosomes had a >17.5 kb deletion of DNA, including the , 2, and 1 globin genes, which is present in many Southeast Asians with an -thalassemia-1 chromosome. Her normal chromosome had the expected cluster of -like globin genes (5----2-1-3), but the segment of DNA between the two globin genes was elongated by some 0.5–0.7 kb. Analyses of various restriction sites suggested that this normal variant of the human globin gene complex is due to a crossover between a normal chromosome with () and a chromosome with an -thalassemia-2 (–3.7) and an -21-hybrid gene.  相似文献   

2.
Summary Pinealectomy of house sparrows on 3L:21D (3 h light per 24 h) resulted in a significant increase in the time between the onset of perch-hopping activity and lights on (on) as well as the time between the offset of activity and lights of (off). The daily variance in on and off was also increased following the removal of the pineal gland. On longer light cycles (i.e., 5L:19D; 7L:17D), neither on or off, nor the variance of on or off was different between sham-pinealectomized and pinealectomized sparrows. Upon returning the birds to an ultrashort light cycle, 1L:23D, off, as well as the variance in on and off were again found to be significantly larger in the pinealectomized birds when compared to sham-operated controls. These results indicate that the effects of pinealectomy on the entrained rhythm of locomotor activity are most pronounced when birds are exposed to a weak entraining agent, such as an ultrashort light: dark cycle. In view of the observation that pinealectomy can alter the phase relationship between activity onset and offset, it is suggested that the pineal gland may be involved in the coupling of the oscillators that regulate activity onset and offset.  相似文献   

3.
Summary Electrical potential differences across the plasma membrane () of the yeastPichia humboldtii were measured with microelectrodes (filled with 0.1m KCl) inserted into cells immobilized in microfunnels. The registered signals were reproducible and stable for several minutes. On attainment of stable reading for the specific membrane resistanceR sp was determined by applying square-current pulses to the preparation. Both andR sp were pH dependent and displayed equal but opposite deflection, reaching its maximal value of –88±9 mV (n=13) andR sp its minimal value of 10 k·cm2 (maximal conductance) at pH 6.5. Uncouplers and the polyene antibiotic nystatin depolarized the cells, decreasing to –21±15 mV (n=10) with concomitant decrease ofR sp. Comparison of values from microelectrode measurements with those calculated from the steady-state distribution of tetraphenylphosphonium ions agreed within 10 mV under all physiological conditions tested, except at pH values above 7.0. During microelectrode insertion transient voltage signals (a few msec long) were detected by means of an oscilloscope. These voltage signals were superimposed on the stable recordings described above. These short voltage signals disappeared in uncoupled cells. The closely related values obtained by two independent methods (direct measurements with microelectrodes and calculation from steady-state distribution of a lipophilic cation) provide evidence that these values reffect the true membrane potential of intact cells.  相似文献   

4.
Studies were undertaken to determine if there is an association between nonstomatally-mediated acclimation of photosynthesis to low water potential (w) and the maintenance of chloroplast volume during water stress. Spinach plants either kept well watered throughout their growth (non-acclimated), or subjected to water stress such that leaf w dropped to -1.5 megapascals (MPa) and then were rewatered (acclimated) were subjected to drought episodes. During these stress periods, photosynthesis was maintained to a greater extent in acclimated plants as compared to non-acclimated plants at w below -1 MPa.Estimates of internal leaf [CO2] suggested that photosynthetic acclimation to low w was not primarily due to altered stomatal response. As w dropped from initial values, a decline in steady state levels of ribulose 1,5-bisphosphate (RuBP) occurred in both non-acclimated and acclimated plants. RuBP decline was less severe in acclimated plants.Low w effects on chloroplast volume in non-acclimated and acclimated plants were estimated by measuring the volume of intact chloroplasts isolated from plants in solutions which were made isotonic to declining leaf osmotic potential during the drought episodes. Chloroplast volume was maintained to a greater extent at low w in acclimated, as compared with non-acclimated plants. Although substantial osmotic adjustment occurred in both non-acclimated and acclimated plants, the extent of osmotic adjustment was the same. These data were interpreted as supporting the hypothesis that cellular-level acclimation to low w is associated with chloroplast volume maintenance, and this physiological acclimation is correlated with enhanced photosynthetic capacity of the leaf at low w.Abbreviations [CO2]i internal leaf CO2 concentration - s osmotic potential - RWC relative water content - RuBP ribulose 1,5-bisphosphate - w water potential  相似文献   

5.
Summary Plant water relations and shoot growth rate of shrubs resprouting after fire or unburnt were measured in a semi-arid poplar box (Eucalyptus populnea) shrub woodland of eastern Australia. In vegetation unburnt for about 60 years, the dawn xylem water potential (x) of the dominant shrub species was about-1.0 MPa when the soil was wet and-8.0 MPa when the soil was very dry. At any one time, the dominant shrub species,Eremophila mitchellii, E. sturtii, Geijera parviflora andCassia nemophila, were similar in x butAcacia aneura andDodonaea viscosa were consistently higher in x than this group when the soil was moist and lower when the soil was dry. The dominant tree species,Eucalyptus populnea andE. intertexta, appeared to have access to additional water beneath the hardpan which is located 60–80 cm below the surface. When shrubs were under extreme water stress (x of-8 MPa), the trees had a x of-3 to-3.6 MPa. Following a fire, both x and leaf stomatal conductance (g s) of resprouting shrubs were higher for about 5 years than comparable-aged unburnt vegetation, with relative differences in x increasing with drought stress. Elongation rate of resprouts was positively linked to prefire shrub height in 3 of 4 species. However, shrubs resprouting after high intensity fires had substantially higher rates of shoot elongation than after low intensity fires which were in turn higher than for foliar expansion of unburnt shrubs. It is concluded that the growth rate of resprouting shrubs is primarily determined by physiological/ morphological factors associated with plant size but is also assisted by greater availability of water and possibly nutrients for a period after fire.  相似文献   

6.
Plants of sunflower (Helianthus annuus L. cv Giza2) were salt-stressed with a combination of NaCl and CaCl2 inconcentrations having different osmotic potentials (s from 0 to –1.0MPa) and were treated with 5 and 10mg L–1 of thiamin either sprayed on the shoot orapplied to the root. The membranes of leaf discs from salt-stressed plantsappeared to be less stable (more injured) under heat(51°C) and drought (40% polyethylene glycol6000) stresses than control plants. Salinity slowed the rate of growth (lengthand dry mass production), lowered leaf relative water content (RWC) and leafandroot water potential (w), decreased the contents of chlorophyll (Chl),soluble sugars (SS) and the K+/Na+ ratio butenhanced total free amino acids (TAA), Na+,Ca2+and Cl accumulation in the shoot and root system. Root orshoot application of thiamin reduced membrane injury by either heat ordehydration stress, lowered leaf w, improved uptake of K+,and increased leaf RWC, Chl, SS, TAA contents and dry mass production. Theeffects of salinity (s), thiamin (Thi.) and their interaction(s×Thi) on the parameters tested were significant.Salinity was dominant (as indicated by 2 values) in affectingthe contents of Ca2+, Cl, TAA and membranestability to heat and leaf w. The role of thiamin was dominant forNa+, K+ and SS contents and the contribution ofinteraction was dominant for growth parameters, Chl. and root w.  相似文献   

7.
Water-stressed maize (Zea mays L.) leaves showed a large decrease in leaf conductance during photosynthesis. Net CO2 uptake and evaporation declined fast at mild stress (=–0.6 to –1.0 MPa) and slower at more severe stress (=–1.0 to -1.2 MPa), whereas the CO2 concentration in the intercellular spaces (Ci) did not drop to the CO2 compensation point. The activities of the enzymes of photosynthetic carbon metabolism tested in this study dropped by approx. 30% at =-1.2 MPa. Glutamine synthetase activity was unaffected by water stress, whereas the activity of nitrate reductase was almost completely inhibited. The decline of enzyme activities in relation to was correlated with a concomitant decrease in the content of total soluble protein of the stressed leaves. The total leaf pools of malate, pyruvate and oxaloacetate decreased almost linearly in relation to , thus obviously contradicting the almost constant Ci. In comparison to the controls (=0.6 MPa) the content of citrate and isocitrate increaed markedly at =-0.9 MPa and decreased again at =-1.2 MPa.Abbreviations PCR photosynthetic carbon reduction cycle - PCO photosynthetic carbon oxidation cycle - PEP phosphoenolypyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

8.
The main carotenoid of Flavobacterium strain R1560 has been identified as (3R,3R)-zeaxanthin. Also present were small amounts of 15-cis-phytoene, phytofluene, -carotene (7,8,7,8-tetrahydro-, -carotene plus 7,8,11,12-tetrahydro-, -carotene), neurosporene, lycopene, -zeacarotene, -carotene, -carotene, -cryptoxanthin, rubixanthin, 3-hydroxy--zeacarotene and several apo-carotenals. Zeaxanthin production was inhibited by nicotine (10 mM), and lycopene and rubixanthin accumulated. The biosynthesis of zeaxanthin is discussed in terms of pathways and also of half-molecule reaction sequences. The presence of zeaxanthin may be a characteristic of a group of Flavobacterium species, and may thus be useful in the taxonomic classification of these organisms.  相似文献   

9.
Summary During their flux through the skin of the frogLeptodactylus ocellatus, Na+ and Cl interact with each other. This interaction gives rise to electrical phenomena which are studied in the present paper. The skin is mounted in Na2SO4 Ringer's with 115 mM Na+ on the inside, and a variety of outer solutions,. The osmolarity of all solutions is kept constant at 237.8 mosmol by adding sucrose. When the main anion used on the outside is SO 4 = the electrical potential difference () rises steadily with the concentration of sodium (Na+)o up to 87 mV, which is reached at about 20mm. Thereafter remains constant. When the main anion is Cl it is observed that rises steadily with (NaCl)o with a slope similar to the curve obtained with SO 4 = (37 mV per decade), but with a lower intercept attributed to an inward Cl pumping which is characteristic of this frog species. At 2–9 mM (NaCl)o a Cl-specific channel is activated. Further increases of (NaCl)o produce a decrease of . The specificity of the activation of this site by monovalent cations and its use by monovalent anions is also studied.  相似文献   

10.
We have previously shown that mitochondrial membrane potential () drop promoted by prooxidants and Ca2+ can be reversed but not sustained by ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid (EGTA) unless dithiothreitol (DTT), a disulfide reductant, is also added [Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E. (1993).Arch. Biochem. Biophys. 307, 1–7]. In this study we show that catalase or ADP are also able to potentiate this EGTA effect. When EGTA is added long after (12 min) the completion of swelling or elimination, no membrane resealing occurs unless the EGTA addition was preceded by the inclusion of DTT, ADP, or catalase soon after was collapsed. Total recovery by EGTA is obtained only in the presence of ADP. The sensitivity of the ADP effect to carboxyatractyloside strongly supports the involvement of the ADP/ATP carrier in this mechanism. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized membrane proteins shows that protein aggregation due to thiol cross-linkage formed during drop continues even after is already eliminated. Titration with 5,5-dithio-bis(2-nitrobenzoic acid) supports the data indicating that the formation of protein aggregates is paralleled by a decrease in the content of membrane protein thiols. Since the presence of ADP and EGTA prevents the progress of protein aggregation, we conclude that this process is responsible for both increased permeability to larger molecules and the irreversibility of drop. The protective effect of catalase suggests that the continuous production of protein thiol cross-linking is mediated by mitochondrial generated reactive oxygen species.  相似文献   

11.
Cross-correlated relaxation rates involving the C-H dipolar interaction and the carbonyl (C) chemical shift anisotropy (CSA) have been measured using two complementary 3D experiments. We show that the protein backbone angle can be directly refined against such cross-correlated relaxation rates (H C,C) and the three-bond H/D isotope effect on the C chemical shifts (3C (ND)). By simultaneously using both experimental parameters as restraints during NMR structure calculations, a unique value for the backbone angle is defined. We have applied the new refinement method to the -Spectrin SH3 domain (a -sheet protein) and to the Sgs1p HRDC domain (an -helical protein) and show that the quality of the NMR structures is substantially improved, judging from the atomic coordinate precision and the Ramachandran map. In addition, the -refined NMR structures of the SH3 domain deviate less from the 1.8 Å crystal structure, suggesting an improved accuracy. The proposed refinement method can be used to significantly improve the quality of NMR structures and will be applicable to larger proteins.  相似文献   

12.
Summary M1 is a virulent bacteriophage of Methanobacterium thermoautotrophicum strain Marburg. Restriction enzyme analysis of the linear, 30.4 kb phage DNA led to a circular map of the 27.1 kb M1 genome. M1 is thus circularly permuted and exhibits terminal redundancy of approximately 3 kb. Packaging of M1 DNA from a concatemeric precursor initiates at the pac site which was identified at coordinate 4.6 kb on the circular genome map. It proceeds clockwise for at least five packaging rounds. Headful packaging was also shown for M2, a phage variant with a 0.7 kb deletion at coordinate 23.25 on the map.  相似文献   

13.
Photosynthetic potential of isolated chloroplasts was investigated during in situ water deficits. An eight day stress cycle imposed on spinach plants reduced leaf w by 0.57MPa, and leaf by 0.50MPa, resulting in partial turgor maintenance during the stress cycle. Pressure/volume curves confirmed the occurrence of osmotic adjustment. Leaf depression was associated with an altered response of chloroplasts to low in vitro. Optimum reaction medium for photosynthesis shifted from –1.04 to –1.57MPa, and low was not as inhibitory to photosynthesis of plastids pre-exposed to stress in situ. These data indicate that chloroplasts acclimate to low external in response to leaf water deficits. This response was still evident four days after a stress cycle ended, but was nearly reversed eight days after stress. Repeated stress cycles in situ did not increase the degree of chloroplast acclimation to low in vitro. Fast dehydration of leaves did not induce this apparent chloroplast acclimation.Abbreviations osmotic potential - w water potential - PEG polyethylene glycol 8000 - MPa megapascals  相似文献   

14.
J. S. Boyer  Gloria Wu 《Planta》1978,139(3):227-237
The ability of water to enter the cells of growing hypocotyl tissue was determined in etiolated soybean (Glycine max (L.) Merr.) seedlings. Water uptake was restricted to that for cell enlargement, and the seedlings were kept intact insofar as possible. Tissue water potentials ( w) were measured at thermodynamic equilibrium with an isopiestic thermocouple psychrometer. wwas below the water potential of the environment by as much as 3.1 bars when the tissue was enlarging rapidly. However, w was similar to the water potential of the environment when cell enlargement was not occurring. The low w in enlarging tissue indicates that there was a low conductivity for water entering the cells.The ability of water to enter the enlarging cells was defined as the apparent hydraulic conductivity of the tissue (Lp). Despite the low Lp of growing cells, Lp decreased further as cell enlargement decreased when intact hypocotyl tissue was deprived of endogenous auxin (indole-3-acetic acid) by removal of the hypocotyl hook. Cell enlargement resumed and Lp increased when auxin was resupplied exogenously. The auxin-induced increase in Lp was correlated with the magnitude of the growth enhancement caused by auxin, and it was observed during the earliest phase of the growth response to auxin. The increase in Lp appeared to be caused by an increase in the hydraulic conductivity of the cell protoplasm, since other factors contributing to Lp remained constant. The rapidity of the response is consistent with a cellular site of action at the plasmalemma, although other sites are not precluded.Because the experiments involved only short times, auxin-induced changes in cell enlargement could not be attributed to changes in cell osmotic potentials. Neither could they be attributed to changes in turgor, which increased when the rate of enlargement decreased. Rather, auxin appeared to act by altering the extensibility of the cell walls and by simultaneously altering the ability of water to enter the growing cells under a given water potential gradient. The hydraulic conductivity and extensibility of the cell walls appeared to contribute about equally to the control of the growth rate of the hypocotyls.  相似文献   

15.
Pseudo-peptide bond inhibitors (-bond inhibitors) and peptide-aldehyde inhibitors of atrial granule serine proteinase, the candidate processing enzyme of pro-atrial natrieuretic factor, are prepared in high yield and purity by novel synthetic routes. The -bond compounds retain essential residues for enzyme binding, but place the enzyme inhibition site in the midst of the peptide sequence. Thus, Bz-APR--LR and Bz-APR--SLRR can be considered readthrough inhibitors of atrial granule serine proteinase. The most potent -peptide, Bz-APR--SLRR (IC50=250 M), is about fivefold less potent than the best peptide-aldehyde inhibitor (EACA-APR-CHO), and both the -bond and peptide-aldehyde compounds are competitive, reversible inhibitors of the enzyme. The -bond peptides containing two C-terminal Arg residues are three-to tenfold more potent than the analogous compounds containing only one C-terminal Arg residue, confirming the importance of both Arg residues in the enzyme processing recognition site. As expected, because of their moderate potencies, the -peptides are not useful affinity ligands for purification of atrial granule serine proteinase, but both peptide aldehydes are effective affinity ligands [Damodaran and Harris (1995),J. Protein Chem., this issue].Abbreviations AGSP atrial granule serine proteinase - ANF atrial natriuretic factor - Bz benzoyl - DIEA diisopropylethylamine - DIPCDI diisopropylcarbodiimide - DMF dimethylformamide - DMSO dimethylsulfoxide - EACA 6(e)-aminocaproic acid - EtOAc ethyl acetate - HEPES N-2-hydroxyethylpiperazine-N-propanesulfonic acid - HOBt N-hydroxybenzotriazole - HPLC high-performance liquid chrornatography - NMR nuclear magnetic resonance - PEG polyethylene glycol-3350 - PyBOP benzotriazole-1-yl-oxy-trispyrrolidino-phosphonium-hexafluorophospate - TEA triethylamine - TFA trifluoroacetic acid - THF tetrahydrofuran - TLC thin-layer chromatography - UV ultraviolet - pseudo-peptide bond -CH2-NH-. Single-letter abbreviations are used to denote amino acids  相似文献   

16.
The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update   总被引:14,自引:0,他引:14  
Mitochondrial dysfunction has been shown to participate in the induction of apoptosis and has even been suggested to be central to the apoptotic pathway. Indeed, opening of the mitochondrial permeability transition pore has been demonstrated to induce depolarization of the transmembrane potential (m), release of apoptogenic factors and loss of oxidative phosphorylation. In some apoptotic systems, loss of m may be an early event in the apoptotic process. However, there are emerging data suggesting that, depending on the model of apoptosis, the loss of m may not be an early requirement for apoptosis, but on the contrary may be a consequence of the apoptotic-signaling pathway. Furthermore, to add to these conflicting data, loss of m has been demonstrated to not be required for cytochrome c release, whereas release of apoptosis inducing factor AIF is dependent upon disruption of m early in the apoptotic pathway. Together, the existing literature suggests that depending on the cell system under investigation and the apoptotic stimuli used, dissipation of m may or may not be an early event in the apoptotic pathway. Discrepancies in this area of apoptosis research may be attributed to the fluorochromes used to detect m. Differential degrees of sensitivity of these fluorochromes exist, and there are also important factors that contribute to their ability to accurately discriminate changes in m.  相似文献   

17.
Summary An empirical correlation between the peptide 15N chemical shift, 15Ni, and the backbone torsion angles i, i–1 is reported. By using two-dimensional shielding surfaces (i1–1), it is possible in many cases to make reasonably accurate predictions of 15N chemical shifts for a given structure. On average, the rms error between experiment and prediction is about 3.5 ppm. Results for threonine, valine and isoleucine are worse (4.8 ppm), due presumably to 1-distribution/-gauche effects. The rms errors for the other amino acids are 3 ppm, for a typical maximal chemical shift range of 15–20 ppm. Thus, there is a significant correlation between 15N chemical shift and secondary structure.  相似文献   

18.
Summary Leaf water potentials, osmotic properties and structural characteristics were examined in the Australian tropical rainforest tree species, Castanospermum australe. These features were compared for individuals growing in the understorey and canopy of the undisturbed forest and in an open pasture from which the forest had been cleared. Leaf water potentials during the day declined to significantly lower values in the open-grown and canopy trees than in the understorey trees. During most of the day the opengrown tree experienced the lowest water potentials. These differences were paralleled by significant differences in tissue osmotic properties. The tissue osmotic potential at full hydration was lowest in the open-grown tree (-1.80 MPa), intermediate in the canopy trees (-1.38 MPa), and highest in the understorey trees (-0.80 MPa). As a result, the degree to which high and positive turgor pressures were maintained as water potentials declined was highest in the open-grown tree, intermediate in the canopy trees, and lowest in the understorey trees. The differences in tissue osmotic properties between individuals in the three crown positions were paralleled, in turn, by differences in leaf structual characteristics. Relative to leaves of the canopy and open-grown trees, leaves of the understorey trees had significantly larger epidermal cells with thinner cell walls, larger specific leaf areas and turgid weight: dry weight ratios, and a higher proportion of intercellular air space.Abbreviations 1 Leaf tissue water potential - min Lowest value of 1 during the day ( noon) - P=0 1 zero turgor - R Relative water content - P Tissue turgor pressure - Tissue osmotic potential - 0 at full hydration  相似文献   

19.
Summary Leaf water potential ( l ), osmotic potential ( s ), pressure potential ( p , turgor pressure), relative water content (R) and their interrelationships were determined for a xeric grass (Agropyron dasystachyum) found in the grasslands of Canada. Thermocouple psychrometers were used to measure l and s ; p was obtained by subtraction. l dropped from near 0 bars to about-28 bars as R went from 90% to 75%. R greater than 90% was not observed, perhaps because of a systematic error in determination of turgid water content. R remained relatively high in A. dasystachyum, even at low l . The slope of the l -R relationship was similar to other species which are generally considered to be drought tolerant. p as high as 14 bars was observed. Most of the decrease in l was accounted for by a decline in p . The ability of A. dasystachyum to adjust to fluctuating water stress over the growing season is probably as much related to changes in tissue structure and turgor relationships as to simple changes in osmotic potential.  相似文献   

20.
Quemada  M.  Cabrera  M.L. 《Plant and Soil》1997,189(1):127-137
A better understanding of the effect of temperature (T) and moisture on soil microbial activity should improve our ability to predict N mineralization from soil organic matter and crop residues. The objective of this study was to evaluate the effects of water potential () and T on C and N mineralization from unamended Cecil loamy sand soil (clayey, kaolinitic, thermic Typic Kanhapludult) and from crimson clover (Trifolium incarnatum L.) residues applied on the soil surface. Cecil soil was packed into acrylic plastic cylinders, adjusted to -5.0, -1.5, -0.03, or -0.003 MPa, treated with clover residues on the surface or left unamended, and incubated at 10, 20, 28, or 35°C for 21 d. Headspace gas samples for CO2 and N2O determinations were taken periodically and NH3 evolved was trapped. Inorganic N in soil and residue extracts was analyzed after 21 d. When increased from -5.0 to -0.003 MPa, total CO2 evolved from unamended soil increased linearly with ln(-), whereas total CO2 evolved from clover residue increased exponentially with . In both cases the effect of was enhanced as T increased. Two-dimensional (T, ) equations were developed to describe these effects. Apparent net mineralized N from the clover residue increased with until it reached a maximum between -0.5 and -0.03 Mpa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号