首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Previous studies have shown that the lymphocytes of naive mice produce a strong primary CTL responses in vitro to human MHC class I Ag presented by HLA-transgenic mouse (TGM) cells. A limiting dilution (LD) assay was used to analyze this xenoreactive CTL repertoire in mice. Frequencies of HLA class I-specific CTL precursors (CTLp) were estimated in naive normal and HLA-B27.2-, -B27.5- and HLA-Cw3-double TGM (i.e., mice expressing HLA and human beta 2-microglobulin (hu beta 2m]. The xenoreactive CTLp frequencies were compared to frequencies of CTLp to H-2 alloantigens estimated in naive normal mice. The results showed that the frequencies of HLA class I-specific CTLp are comparable with those of alloreactive CTLp. This overlap in CTLp frequencies suggests that HLA class I xenoantigens are recognized by primary mouse CTL as allelic variants of H-2K and H-2D. This was confirmed in split well analysis by the observation that the xenoreactive response was not restricted by self-MHC of the responding mouse. Thus, primary HLA class I-specific mouse CTL clones recognized their target Ag regardless of whether they were expressed on H-2-mismatched mouse cells or on human cells. The frequencies of HLA class I-specific CTLp in HLA-TGM were comparable to those in normal mice. We propose that MHC allo- and xenoreactive CTL responses are not caused by the activation of CTLp specific for self-MHC plus peptide but to the activation of CTLp recognizing MHC allo- and xenoantigens directly or as peptides presented by their native MHC molecules.  相似文献   

2.
We have introduced the gene (E*01033) encoding the heavy chain of the human nonclassical MHC class I Ag, HLA-E, into the mouse genome. Two founder mice carry a 21-kb fragment, the others bear an 8-kb fragment. Each of the founder mice was mated to mice of an already established C57BL/10 transgenic line expressing human beta2-microglobulin (beta2m). Cell surface HLA-E was detected on lymph node cells by flow cytometry only in the presence of endogenous human beta2m. However, HLA-E-reactive mouse CTL (H-2-unrestricted) lysed efficiently the target cells originating from HLA-E transgenic mice without human beta2m, showing that the HLA-E protein can be transported to the cell surface in the absence of human beta2m, presumably by association with murine beta2m. Rejection of skin grafts from HLA-E transgenic mice demonstrates that HLA-E behaves as a transplantation Ag in mice. HLA-E transgenic spleen cells are effective in stimulating an allogeneic CTL response in normal and human classical class I (HLA-B27) transgenic mice. Furthermore, results from split-well analysis indicate that the majority of the primary in vivo-induced CTL recognizes HLA-E as an intact molecule (H-2-unrestricted recognition) and not as an HLA-E-derived peptide presented by a mouse MHC molecule, although a small fraction (ranging from 4 to 21%) of the primary in vivo-induced CTL is able to recognize HLA-E in an H-2-restricted manner. Based on these observations, we conclude that HLA-E exhibits alloantigenic properties that are indistinguishable from classical HLA class I molecules when expressed in transgenic mice.  相似文献   

3.
L cells expressing human HLA-A2 or HLA-B7 class I antigen heavy chains are not recognized by human cytotoxic T lymphocytes directed at HLA-A2 or HLA-B7 antigens. To test whether the absence of human beta 2-m was the cause of the lack of recognition by the human cytotoxic T lymphocytes, coexpression of the human beta 2-m gene and the HLA-A2 or HLA-B7 heavy chain in L cells ("double transfectants") was obtained. In addition, L cells expressing HLA-A2 or HLA-B7 antigens in association with human beta 2-m were obtained by an exchange reaction, in which human beta 2-m from serum replaced the endogenous murine beta 2-m. Both types of transfectant cells were used in 51Cr-release assays and cold target inhibition assays for human cytotoxic T cell clones which were directed at HLA-A2 or HLA-B7. Neither human CTL clones nor a mixture of CTL specific for HLA-A2 and HLA-B7 were able to recognize these cells. Several alternative explanations for these observations are discussed.  相似文献   

4.
We have introduced the gene encoding the heavy chain of the human MHC class I Ag HLA-B7 into transgenic mice. The gene was shown to be expressed at both the RNA and protein level. Cell surface HLA-B7 was detected on whole spleen cells by immunoprecipitation and on purified T cells by flow cytometry (FACS). Normal mice immunized with H-2-syngeneic B7-transgenic spleen cells generated CTL capable of killing transgenic cells and B7-expressing human JY cells. Anti-HLA mAb blocked the killing of JY cells. These results indicate that the human class I Ag HLA-B7 can be expressed at the surface of transgenic spleen cells in the absence of human beta 2-microglobulin, and that a significant fraction exists in a form recognizable by nontransgenic CTL as a major histocompatibility Ag unrestricted by H-2.  相似文献   

5.
Although mice transgenic (Tg) for human MHC (HLA) class I alleles could provide an important model for characterizing HLA-restricted viral and tumor Ag CTL epitopes, the extent to which Tg mouse T cells become HLA restricted in the presence of endogenous H2 class I and recognize the same peptides as in HLA allele-matched humans is not clear. We previously described Tg mice carrying the HLA-B27, HLA-B7, or HLA-A2 alleles expressed as fully native (HLA(nat)) (with human beta(2)-microglobulin) and as hybrid human/mouse (HLA(hyb)) molecules on the H2(b) background. To eliminate the influence of H2(b) class I, each HLA Tg strain was bred with a H2-K(b)/H2-D(b)-double knockout (DKO) strain to generate mice in which the only classical class I expression was the human molecule. Expression of each HLA(hyb) molecule and HLA-B27(nat)/human beta(2)-microglobulin led to peripheral CD8(+) T cell levels comparable with that for mice expressing a single H2-K(b) or H2-D(b) gene. Influenza A infection of Tg HLA-B27(hyb)/DKO generated a strong CD8(+) T cell response directed at the same peptide (flu nucleoprotein NP383-391) recognized by CTLs from flu-infected B27(+) humans. As HLA-B7/flu epitopes were not known from human studies, we used flu-infected Tg HLA-B7(hyb)/DKO mice to examine the CTL response to candidate peptides identified based on the B7 binding motif. We have identified flu NP418-426 as a major HLA-B7-restricted flu CTL epitope. In summary, the HLA class I Tg/H2-K/H2-D DKO mouse model described in this study provides a sensitive and specific approach for identifying and characterizing HLA-restricted CTL epitopes for a variety of human disease-associated Ags.  相似文献   

6.
A gene encoding the H chain of the human class I MHC Ag HLA-B27 was introduced into the germ lines of inbred C57BL/6 (B6) and non-inbred (B6 X SJL/J) F2 mice. By immunofluorescence and flow cytometry, the HLA-B27 gene product was expressed on lymphoid cells at levels comparable to the endogenous H-2b and H-2s class I MHC molecules. In both primary and secondary MLC between responder spleen cells from non-transgenic (B6 X SJL/J) F1 mice and transgenic stimulator cells, CTL were generated that specifically lysed mouse L cell (H-2k) or human B cell targets expressing HLA-B27, and this lysis thus appeared largely unrestricted by H-2. These results indicate that transgenic mice express a functional HLA-B27 gene product on cell surfaces in the absence of the human beta 2-microglobulin gene. These transgenic mice promise to be a valuable resource in the investigation of the unique role of HLA-B27 in inflammatory human disease.  相似文献   

7.
Homozygous HLA-A2.1 transgenic H-2KbnullDbnull double knockout (KO) mice were created. Their potential to develop HLA-A2. 1-restricted cytolytic responses was compared with that of their classical transgenic counterparts, which still express H-2Kb, Db molecules. On cell surfaces, both strains express similar amounts of chimeric (alpha 1 alpha 2 domains of human, alpha 3 cytoplasmic domains of mouse) HLA-A2.1 molecules in noncovalent association with mouse beta 2-microglobulin. Compared with mice that are totally deprived of histocompatibility class Ia molecules (H-2KbnullDbnull double KO), the expression of HLA-A2.1 in transgenic/double KO mice resulted in sizeable increase in the periphery of CD8+ T cells with a normally diversified TCR repertoire. A biased education in favor of HLA-A2.1, ascribable to the absence of H-2 class Ia molecules, was evidenced in these transgenic/double KO mice by their improved capacity to mount HLA-restricted cytolytic responses, regardless of whether they were virally infected or injected with synthetic epitopic peptide. HLA class I transgenic, H-2 class Ia KO mice should represent useful animal models for the preclinical evaluation of vaccine formulations aiming at the induction of HLA class I-restricted CTL responses.  相似文献   

8.
Sequential transfections of P815 murine mastocytoma cells with class I gene encoding either HLA-Cw3, HLA-A3, or HLA-B7 H chain and subsequently with a human beta 2-microglobulin gene were performed to evaluate the relative efficiency of human and murine beta 2-microglobulins in promoting the cell-surface expression of HLA-class I molecules. A 6-, 11-, and 40-fold specific enhancement of the cell-surface expression of HLA-Cw3, HLA-A3, and HLA-B7 molecules, respectively, was observed in cells co-transfected with human beta 2-microglobulin gene. This effect was attributed to a more efficient association of HLA H chains with human than with murine beta 2-microglobulin, which apparently allowed a more rapid transport of the HLA molecules from the endoplasmic reticulum to the Golgi apparatus.  相似文献   

9.
To identify mAb reacting with the HLA class I alpha 3 domain, 14 mAb recognizing monomorphic determinants expressed on HLA-A, B, and C Ag or restricted to HLA-B Ag were screened in indirect immunofluorescence with mouse L cells expressing HLA-B7/H-2Kb chimeric Ag. mAb CR1S63, CR10-215, CR11-115, and W6/32 were found to react with the HLA class I alpha 3 domain in addition to the alpha 2 domain. mAb Q1/28 and TP25.99 were found to react only with the HLA class I alpha 3 domain. The determinants recognized by the six mAb were mapped on the HLA class I alpha 3 domain by indirect immunofluorescence staining of L cells expressing H-2Kb Ag containing different segments of the HLA-B7 alpha 3 domain chimerized with the H-2Kb alpha 3 domain. mAb TP25.99 reacts with chimeric Ag containing the HLA-B7 184 to 199 stretch, mAb CR10-215 and CR11-115 react with chimeric Ag containing the HLA-B7 184 to 246 stretch, mAb CR1S63 and Q1/28 react with chimeric Ag containing the HLA-B7 184 to 256 stretch, and mAb W6/32 reacts with chimeric Ag containing the whole HLA-B7 alpha 3 domain. Functional analysis using human CD8 alpha-bearing mouse H-2Kb-specific T cell hybridoma cells (HTB-Leu2) showed that only mAb TP25.99 inhibited IL-2 production by HTB-Leu2 cells stimulated with L cells expressing KbKbB7 Ag. This inhibition may occur because of the spatial proximity of the determinant defined by mAb TP25.99 to the CD8 alpha binding loop and/or because of change(s) in the conformation of the CD8 alpha binding loop induced by the binding of mAb TP25.99 to the HLA class I molecule. Furthermore, mAb TP25.99 inhibited the cytotoxicity of CD8-dependent and CD8-independent CTL clones. These results indicate that mAb TP25.99 has unique specificity and functional characteristics. Therefore it represents a valuable probe to characterize the role of the HLA class I alpha 3 domain in immunologic phenomena.  相似文献   

10.
Genes coding for the heavy chain of the class I antigens HLA-A2 or HLA-B7 of the human major histocompatibility complex have been introduced into mouse LtK- cells by cotransfection with the herpes simplex virus thymidine kinase gene. HAT-resistant colonies were isolated expressing either HLA-A2 or HLA-B7 as monitored by indirect immunofluorescence. Immunoprecipitation analysis of both antigens by either sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or isoelectric focusing (IEF) showed that they were identical to the HLA-A2 and HLA-B7 expressed in the human lymphoblastoid cell line JY (homozygous HLA-A2, HLA-B7). However, human cytotoxic T lymphocytes (CTL) generated against JY and CTL clones specific for HLA-A2 or HLA-B7 were unable to recognize the transfectants as targets. These results indicate that the human HLA-A2 (or B7) complexed with the murine beta 2-microglobulin could be an inappropriate target structure for the CTL. However, because the transfectants are not killed by human CTL even in the presence of lectins, it is suggested that other molecules that are not able to overcome the human-mouse species barrier may be involved in the killing mechanism.  相似文献   

11.
As a basis for the characterization of mouse T cells involved in the recognition of xenogeneic HLA molecules, a panel of HLA-B27-reactive cytotoxic T-cell clones was generated upon stimulation by cells from HLA-B27-transgenic mice. The HLA-B27-induced T-cell response was found to comprise two categories of clones: some recognizing HLA-B27 independent of H-2 molecules expressed by the target cells (unrestricted clones), others recognizing HLA-B27 in an H-2 restricted manner. The unrestricted clones exhibited diverse specificities, as judged from their various cross-reactivities with other xenogeneic (HLA) or allogeneic (H-2) molecules. In addition, although most of the unrestricted clones were able to react with both mouse and human HLA-B27-transgenic mice. The HLA-B27 induced T-cell which reacted only with HLA-B27-positive mouse, and not human cells. These findings illustrate that both H-2-restricted and unrestricted T cells with diverse species contribute to HLA-B27-xenorecognition.  相似文献   

12.
Human cytolytic T lymphocytes (CTL) clones and HLA-A2- and HLA-B7-transfected human, monkey, and mouse cell lines were used to investigate the basis for species-restricted antigen recognition. Most allospecific CTL clones obtained after stimulation with the human JY cell line (source of HLA-A2 and HLA-B7 genomic clones) recognized HLA antigens expressed in human and monkey cell lines but did not recognize HLA expressed in murine cells. By initially stimulating the responder cells with HLA-transfected mouse cells, two CTL clones were obtained that recognized HLA expressed in murine cells. Functional inhibition of these CTL clones with anti-class I monoclonal antibodies (MAb) indicated that clones reactive with HLA+ murine cells were of higher avidity than clones that did not recognize HLA+ murine target cells. MAb inhibition of accessory molecule interactions demonstrated that the LFA-1 and T8 surface molecules were involved in CTL-target cell interactions in all three species. In contrast, the LFA-2/CD2 molecule, previously shown to participate in a distinct activation pathway, was involved in the cytolysis of transfected human and monkey target cells, but not in the lysis of HLA+ murine cells. Thus transfection of HLA genes into different recipient species cell lines provides us with the ability to additionally delineate the functional requirements for allospecific CTL recognition and lysis.  相似文献   

13.
Cytotoxic T lymphocyte recognition of secreted HLA class I molecules   总被引:1,自引:0,他引:1  
The cytolytic responses of DBA/2 mice against syngeneic transfected P815 mastocytoma cells expressing either membrane-associated (HLA-Cw3) or -secreted hybrid (HLA-Cw3 x H-2 Q10b) molecules were compared. In spite of the absence of serologically detectable hybrid molecules on their plasma membrane, cells secreting these molecules elicited a CTL response similar to that of cells expressing the membrane associated HLA-Cw3 molecules, in terms of both MHC-restriction and peptide specificity. Together with the observation that syngeneic mice were capable of rejecting the injected secreting cells, these results imply that secreted HLA class I molecules can function as minor histocompatibility Ag and suggest that processing of both the membrane-bound and the -secreted forms of a protein may follow common or overlapping pathways.  相似文献   

14.
T cells of two donors, JR (HLA-A23, 29; B7,7; G; DRw5) and HG (HLA-A2, 23; B40, w44; Cw4), were stimulated with cells from an HLA homozygous lymphoblastoid cell line JY (HLA-A2, 2; B7,7, C-, DRw4, 6) and cloned by limiting dilution after the third stimulation. Two cytotoxic T-cell (CTL) clones, JR-2-16 (from donor JR) and HG-31 (from donor HG), were used for detailed studies. The results of a panel study using lymphocytes from HLA-typed individuals and a study with two HLA recombinant families indicate that the antigens recognized by the CTL clones JR-2-16 and HG-31 were highly associated with HLA-A2 and HLA-B7, respectively. Blocking studies with a monoclonal antibody recognizing a framework determinant on HLA-A, -B and-C antigens and a monoclonal antibody reacting with HLA-A2 support the notion that JR-2-16 and HG-31 interact with the HLA-A2 and the HLA-B7 antigens per se. However, these clones did not recognize the HLA-A2 and HLA-B7 of all donors typed for these antigens, suggesting that the HLA-A2 and HLA-B7 antigens of these particular donors are variants of the serologically defined HLA antigens. These results indicate that in vitro-derived human CTL clones detect variations in the serologically defined allospecificities and can be used as reagents to elucidate the polymorphism of HLA antigens further.Abbreviations used in this paper: CTL cytotoxic - T lymphocytes - BSA bovine serum albumin - PHA phytohemagglutinin - Con A concanavalin A.  相似文献   

15.
In a previous report we described how cross-immunizations of pairs of transgenic mice expressing different HLA class I antigens led to the production of antibodies directed exclusively at polymorphic epitopes. This was ascribed to self-tolerance of HLA that prevents immune responses to monomorphic epitopes and focuses responses on polymorphic ones. In the present report we extend our findings and demonstrate that immunizations of class I transgenic mice with HLA transfected mouse fibrosarcoma as well as with human lymphoblastoid cells also preferentially yield antibodies to polymorphic epitopes. This was the case whether or not immunizations were carried out across locus barriers [e.g., Tg (HLA-A *0201) or Tg (HLA-Cw*0301) transgenic mice immunized with HLA-B27 transfectants] or within the same locus [e.g., Tg (HLA-B*1302) transgenic mice immunized with HLA-B27 transfectants or B27-expressing lympho-blastoid cell]. Use of an extended immunization protocol with four or more booster injections favored antibodies of IgG isotype with affinities high enough to lyse normal peripheral blood lymphocytes (PBLs) in complement-dependent cytotoxicity assays and to immunoprecipitate HLA antigens. The specificities covered by the monoclonal antibodies (mAbs) could be either broad or narrow, depending on the genetic distance of the HLA antigens or alleles involved. For instance, a Tg(HLA-B*1302) transgenic mouse immunized with B27 produced both broad B7/B27-specific antibodies, Bw4-specific antibodies, and one antibody reacting with all B alleles except B13 and with some C alleles. On the other hand, a Tg(HLA-B*1302) transgenic mouse immunized with Bw47 transfectants responded narrowly with an antibody to Bw60 and Bw47. Thus it appears that by choosing appropriate recipient mice and closely related or more distant HLA antigens, antibodies of a programmed specificity can be generated. Address correspondence and offprint requests to: U. Hämmerling.  相似文献   

16.
Long-term syngeneic mouse cytolytic T lymphocyte (CTL) clones were obtained from DBA/2 (H2d) mice immunized with P815 (H2d) cells transfected with cloned human class I histocompatibility genes, HLA-CW3 or HLA-A24. Three distinct patterns of specificity were defined on P815 HLA transfectant target cells. One clone lysed HLA-CW3 but not -A24 transfectants, and a second lysed HLA-A24 but not -CW3 transfectant target cells. The third clone lysed P815 targets transfected with either HLA gene. None of the CTL clones lysed L cells (H2k) transfected with the same HLA genes or human targets that expressed these HLA specificities. Several lines of evidence indicated that recognition of HLA transfectants by these CTL clones was H2 restricted. First, lysis of P815 HLA transfectants could be inhibited by anti-H2Kd monoclonal antibody. In addition, the anti-P815-HLA CTL clones could lyse a (human X mouse) hybrid target that expressed both HLA class I and H2Kd antigens, but not a clonal derivative that no longer expressed H2Kd. The most direct evidence for H2-restricted recognition of P815-HLA transfectants by the syngeneic CTL clones was obtained by double transfection of mouse L cells (H2k) with both HLA and H2 class I genes. L cells transfected with HLA and H2Kd genes were susceptible to lysis by the same CTL clones that lysed the corresponding P815-HLA transfectant targets. Thus under certain conditions, CTL recognition of xenogeneic class I histocompatibility gene products can be restricted by other class I gene products.  相似文献   

17.
The frequency of murine CTL precursors (CTLp) that recognize the human histocompatibility Ag HLA-A2 and HLA-B7 was measured and found to be approximately two orders of magnitude lower than the frequency of CTLp that recognize murine H-2 alloantigens. The possible contribution of other cell surface molecules to this difference in response was addressed by expression of the H-2Ld molecule on a human cell and the HLA-B7 molecule on a murine cell. It was found that both human and murine H-2Ld expressing cells elicited comparable levels of H-2Ld specific CTL. Although murine HLA-B7 positive cells stimulated a higher frequency of HLA-B7-specific CTLp than did human cells, this appeared to be largely due to stimulation of CTLp that recognized HLA-B7 in the context of H-2 molecules; consequently, it was concluded that the difference in the frequency of murine CTLp elicited by human and murine class I Ag is due to species specific structural differences in these molecules. The regions of the class I molecule that were responsible for this difference were mapped using chimeric class I molecules constructed to replace domains of the human molecule with their murine counterparts. It was found that the frequency of CTLp is controlled by structures within the alpha 1 and alpha 2 domains of the molecule. These results are discussed in the light of models for T cell recognition of class I Ag and the diversification of the T cell receptor repertoire.  相似文献   

18.
Cell surface expression of human class I molecules in transgenic mice is dependent upon the available pool of 2-microglobulin (2m) and the affinity between mouse 2m and human class I molecules. HLA-B27 and HLA-Cw3 transgenes can be expressed in mouse strains of the H-2 haplotypes b,f,k, and s which encode two endogenous class I genes mapping to H-2K and H-2D. The human class I genes cannot be expressed on H-2 dand H-2 qhaplotypes which encode three endogenous class I molecules (K,D,L). This suggests that there may be only enough mouse 2m molecules to support three class I molecules. When both the HLA-B27 and HLA-Cw3 genes are introduced into H-2 bmice, only HLA-Cw3 reaches the cell surface. This suggests that HLA-Cw3 has a higher affinity than HLA-B27 for mouse 2m. The possible implications of our findings regarding the assembly, transport, and expression of class I MHC molecules in vivo are discussed.  相似文献   

19.
In contrast to general findings that mouse and human cytotoxic T lymphocytes (CTL) are restricted in cytotoxic activity by major histocompatibility complex (MHC) class I antigens, we previously found that some herpes simplex virus (HSV) type I-infected cells that shared no HLA class I antigens with the HSV-1-stimulated lymphocytes were lysed. In this study, we addressed the question of the role of HLA antigens in human T cell-mediated lysis of HSV-1-infected cells by generating clones of HSV-1-directed CTL from two HSV-1-seropositive individuals. CTL clones that lysed autologous HSV-1-infected lymphoblastoid cell lines (LCL), but not natural killer-sensitive K562 cells or uninfected or influenza virus-infected LCL, were tested for cytotoxicity against a panel of allogeneic HSV-1-infected LCL. Clone KL-35 from individual KL lysed only HSV-1-infected LCL sharing the HLA class II MB1 antigen with KL. With all four CTL clones isolated from individual PM, only HSV-1-infected LCL sharing DR1 with PM were lysed. Monoclonal antibody s3/4 (directed against MB1 ), but not TS1/16 or B33 .1 (directed against a DR framework determinant), blocked lysis of autologous HSV-1-infected cells by KL-35. In contrast, B33 .1, but not s3/4, blocked lysis of autologous HSV-1-infected cells by the PM CTL clones but not by KL-35. Together, these results indicate that our five human CTL clones which are directed against HSV-1-infected cells, and which are all OKT3+, OKT4+, OKT8-, are restricted in lytic activity by HLA class II MB and DR antigens. These results suggest that the HLA D region-encoded class II antigens may be important in the recognition and destruction of virus-infected cells by human CTL.  相似文献   

20.
Eleven cytotoxic T lymphocyte (CTL) clones were derived from C57BL/6 spleen cells immunized with HLA-B7 expressing human lymphoblastoid cell lines. Reactivity against HLA-B7 was initially established because the clones lysed 2 target cells that shared only HLA-B7 with the immunizing cell line and they did not lyse five other cell lines that were HLA-B7 negative but expressed other class I or class II antigens found on the immunizing cell. Six of the clones were subsequently shown to lyse all tested HLA-B7-positive B and T lymphoid cell lines, peripheral blood lymphocytes, and a murine L cell that expressed HLA-B7 as a consequence of DNA-mediated gene transfer. On the basis of the inability of the clones to lyse a panel of HLA-B7-negative cell lines, up to 18 other class I antigens could be eliminated as being cross-reactively recognized. However, two of the clones recognized a single HLA-B7-negative cell line. It is suggested that in these cases the clones were cross-reactively recognizing the HLA-B27 or HLA-B40 antigens that were present on these target cells. The remaining five CTL clones failed to lyse one out of seven tested HLA-B7-positive lymphoid lines (either RPMI-1788 or DR1B) and failed to lyse peripheral blood lymphocytes from one out of three tested HLA-B7-positive individuals. These five clones also did not recognize the HLA-B7-positive murine L cell. However, based on analysis with a large target cell panel, the reactivity pattern of these five clones could only be correlated with recognition of HLA-B7. This conclusion is further supported by antibody-blocking studies to be reported elsewhere. As before, lysis of single HLA-B7-negative target cells by two of the clones could be ascribed to recognition of HLA-B27 or HLA-B40. The results show that murine clones raised against HLA-B7 exhibit a high degree of specificity for determinants that are unique or largely confined to the HLA-B7 alloantigen. In addition, these clones define different antigenic determinants on the molecule. Thus, such clones appear to be excellent candidates for use as human tissue typing reagent. The results further show that there is a strong correlation between recognition of particular HLA-B7-positive human cell lines and recognition of the HLA-B7 expressing murine L cell. Possible reasons for such a correlation and their relationship to the general phenomenon of CTL recognition are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号