首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the origins of the large positive cooperativity (ΔG(0)(coop) = -2.9 kcal mol(-1)) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements. The DHFR structures are generally very similar except for the A-B loop region and part of helix B (residues 15-31) which could not be directly detected for L. casei apo DHFR because of line broadening from exchange between folded and unfolded forms. Thermodynamic and NMR measurements suggested that a significant contribution to the cooperativity comes from refolding of apo DHFR on binding the first ligand (up to -0.95 kcals mol(-1) if 80% of A-B loop requires refolding). Comparisons of Cα-Cα distance differences and domain rotation angles between apo DHFR and its complexes indicated that generally similar conformational changes involving domain movements accompany formation of the binary complexes with either TMP or NADPH and that the binary structures are approaching that of the ternary complex as would be expected for positive cooperativity. These favorable ligand-induced structural changes upon binding the first ligand will also contribute significantly to the cooperative binding. A further substantial contribution to cooperative binding results from the proximity of the bound ligands in the ternary complex: this reduces the solvent accessible area of the ligand and provides a favorable entropic hydrophobic contribution (up to -1.4 kcal mol(-1)).  相似文献   

2.
Amide protection factors have been determined from NMR measurements of hydrogen/deuterium amide NH exchange rates measured on assigned signals from Lactobacillus casei apo-DHFR and its binary and ternary complexes with trimethoprim (TMP), folinic acid and coenzymes (NADPH/NADP(+)). The substantial sizes of the residue-specific DeltaH and TDeltaS values for the opening/closing events in NH exchange for most of the measurable residues in apo-DHFR indicate that sub-global or global rather than local exchange mechanisms are usually involved. The amide groups of residues in helices and sheets are those most protected in apo-DHFR and its complexes, and the protection factors are generally related to the tightness of ligand binding. The effects of ligand binding that lead to changes in amide protection are not localised to specific binding sites but are spread throughout the structure via a network of intramolecular interactions. Although the increase in protein stability in the DHFR.TMP.NADPH complex involves increased ordering in the protein structure (requiring TDeltaS energy) this is recovered, to a large extent, by the stronger binding (enthalpic DeltaH) interactions made possible by the reduced motion in the protein. The ligand-induced protection effects in the ternary complexes DHFR.TMP.NADPH (large positive binding co-operativity) and DHFR.folinic acid.NADPH (large negative binding co-operativity) mirror the co-operative effects seen in the ligand binding. For the DHFR.TMP.NADPH complex, the ligand-induced protection factors result in DeltaDeltaG(o) values for many residues being larger than the DeltaDeltaG(o) values in the corresponding binary complexes. In contrast, for DHFR.folinic acid.NADPH, the DeltaDeltaG(o) values are generally smaller than many of those in the corresponding binary complexes. The results indicate that changes in protein conformational flexibility on formation of the ligand complex play an important role in determining the co-operativity in the ligand binding.  相似文献   

3.
R67 dihydrofolate reductase (DHFR) is a novel bacterial protein that possesses 222 symmetry and a single active site pore. Although the 222 symmetry implies that four symmetry-related binding sites must exist for each substrate as well as for each cofactor, various studies indicate only two molecules bind. Three possible combinations include two dihydrofolate molecules, two NADPH molecules, or one substrate plus one cofactor. The latter is the productive ternary complex. To explore the role of various ligand substituents during binding, numerous analogues, inhibitors, and fragments of NADPH and/or folate were used in both isothermal titration calorimetry (ITC) and K(i) studies. Not surprisingly, as the length of the molecule is shortened, affinity is lost, indicating that ligand connectivity is important in binding. The observed enthalpy change in ITC measurements arises from all components involved in the binding process, including proton uptake. As a buffer dependence for binding of folate was observed, this likely correlates with perturbation of the bound N3 pK(a), such that a neutral pteridine ring is preferred for pairwise interaction with the protein. Of interest, there is no enthalpic signal for binding of folate fragments such as dihydrobiopterin where the p-aminobenzoylglutamate tail has been removed, pointing to the tail as providing most of the enthalpic signal. For binding of NADPH and its analogues, the nicotinamide carboxamide is quite important. Differences between binary (binding of two identical ligands) and ternary complex formation are observed, indicating interligand pairing preferences. For example, while aminopterin and methotrexate both form binary complexes, albeit weakly, neither readily forms ternary complexes with the cofactor. These observations suggest a role for the O4 atom of folate in a pairing preference with NADPH, which ultimately facilitates catalysis.  相似文献   

4.
The x-ray structure of the PTX:NADPH:L22F human mutant DHFR ternary complex was used as a structural template to generate structural models for the following wild type DHFR complexes: PTX:DHFR:NADPH, TMP:DHFR:NADPH, EPM:DHFR:NADPH, and TMQ:DHFR:NADPH. Each of these complexes were subsequently modeled in a 60 Å cube of explicit water and minimized to a rms gradient of from 1.0-3.0·10-5 kcal·Å-1. For each complex, interaction energies were calculated for the antifolate interaction with each of the following: the DHFR binding site residues, the entire DHFR protein, the solvated complex (containing DHFR, NADPH, and solvent water), water alone, and NADPH. Additionally, each antifolate was subdivided into distinct substructural regions and interaction energy calculations were performed in order to evaluate their contributions to overall antifolate interaction. Each antifolate showed its most stable interaction with the solvated complex. Substructural regions which consisted of a nitrogen containing aromatic ring system contributed most to the stability of the antifolate interactions, while the hydrocarbon aromatic rings, methoxy, and ethoxy groups showed much less stable interaction energies. Since the different substructural regions of nonclassical antifolates differ in their contributions to overall antifolate binding, those substructural regions which exhibit relatively unfavorable interaction energies may constitute important targets in the design of improved DHFR inhibitors.  相似文献   

5.
The binding of the coenzyme to octopine dehydrogenase was investigated by kinetic and spectroscopic studies using different analogues of NAD+. The analogues employed were fragments of the coenzyme molecule and dinucleotides modified on the purine or the pyridine ring. The binding of ADPribose is sufficient to induce local conformational changes necessary for the good positioning of substrates. AMP, ADP, NMN+ and NMNH do not show this effect. Analogues modified on the purine ring such as nicotinamide deaminoadenine dinucleotide, nicotinamide--8-bromoadenine dinucleotide, nicotinamide--8-thioadenine dinucleotide and nicotinamide 1: N6-ethenoadenine dinucleotide bind to the enzyme and give catalytically active ternary complexes. Modifications of the pyridine ring show an important effect on the binding of the coenzyme as well as on the formation of ternary complexes. Thus, the carboxamide group can well be replaced by an acetyl group and also, though less efficiently, by a formyl or cyano group. However more bulky substituents such as thio, chloroacetyl or propionyl groups prevent the binding. The analogues bearing a methyl group in the 4 or 5 position, which are competitive inhibitors, are able to give binary by not ternary complexes. The case of 1,4,5,6-tetrahydronicotinamide--adenine dinucleotide which does not give ternary complexes like NADH is discussed. The above findings show that the pyridine and adenine parts are both involved in the binding of the coenzyme and of the substrate to octopine dehydrogenase. The nicotinamide binding site of this enzyme seems to be the most specific and restricted one among the dehydrogenases so far described. The protective effects of coenzyme analogues towards essential -SH group were also studied.  相似文献   

6.
The chemical shifts of all the aromatic proton and anomeric proton resonances of NADP+, NADPH, and several structural analogues have been determined in their complexes with Lactobacillus casei dihydrofolate reductase by double-resonance (saturation transfer) experiments. The binding of NADP+ to the enzyme leads to large (0.9-1.6 ppm) downfield shifts of all the nicotinamide proton resonances and somewhat smaller upfield shifts of the adenine proton resonance. The latter signals show very similar chemical shifts in the binary and ternary complexes of NADP+ and the binary complexes of several other coenzymes, suggesting that the environment of the adenine ring is similar in all cases. In contrast, the nicotinamide proton resonances show much greater variability in position from one complex to another. The data show that the environments of the nicotinamide rings of NADP+, NADPH, and the thionicotinamide and acetylpyridine analogues of NADP+ in their binary complexes with the enzyme are quite markedly different from one another. Addition of folate or methotrexate to the binary complex has only modest effects on the nicotinamide ring of NADP+, but trimethoprim produces a substantial change in its environment. The dissociation rate constant of NADP+ from a number of complexes was also determined by saturation transfer.  相似文献   

7.
Plasmid-encoded bacterial R67 dihydrofolate reductase (DHFR) is a NADPH-dependent enzyme unrelated to chromosomal DHFR in amino acid sequence and structure. R67 DHFR is insensitive to the bacterial drug trimethoprim in contrast to chromosomal DHFR. The crystal structure of Q67H mutant of R67 DHFR bound to NADP(+) has been determined at 1.15 angstroms resolution. The cofactor assumes an extended conformation with the nicotinamide ring bound near the center of the active site pore, the ribose and pyrophosphate group (PP(i)) extending toward the outer pore. The ribonicotinamide exhibits anti conformation as in chromosomal DHFR complexes. The relative orientation between the PP(i) and the nicotinamide ribose differs from that observed in chromosomal DHFR-NADP(+) complexes. The coenzyme displays symmetrical binding mode with several water-mediated hydrogen bonds with the protein besides ionic, stacking, and van der Waals interactions. The structure provides a molecular basis for the observed stoichiometry and cooperativity in ligand binding. The ternary model based on the present structure and the previous R67 DHFR-folate complex provides insight into the catalytic mechanism and indicates that the relative orientation of the reactants in plasmid DHFR is different from that seen in chromosomal DHFRs.  相似文献   

8.
The 2.2-A crystal structure of chicken liver dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a ternary complex with NADP+ and biopterin (a poor substrate). The space group and unit cell are isomorphous with the previously reported structure of chicken liver DHFR complexed with NADPH and phenyltriazine [Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., & Kraut, J. (1982) J. Biol. Chem. 257, 2528-2536]. The structure contains an ordered water molecule hydrogen-bonded to both hydroxyls of the biopterin dihydroxypropyl group as well as to O4 and N5 of the biopterin pteridine ring. This water molecule, not observed in previously determined DHFR structures, is positioned to complete a proposed route for proton transfer from the side-chain carboxylate of E30 to N5 of the pteridine ring. Protonation of N5 is believed to occur during the reduction of dihydropteridine substrates. The positions of the NADP+ nicotinamide and biopterin pteridine rings are quite similar to the nicotinamide and pteridine ring positions in the Escherichia coli DHFR.NADP+.folate complex [Bystroff, C., Oatley, S. J., & Kraut, J. (1990) Biochemistry 29, 3263-3277], suggesting that the reduction of biopterin and the reduction of folate occur via similar mechanisms, that the binding geometry of the nicotinamide and pteridine rings is conserved between DHFR species, and that the p-aminobenzoylglutamate moiety of folate is not required for correct positioning of the pteridine ring in ground-state ternary complexes. Instead, binding of the p-aminobenzoylglutamate moiety of folate may induce the side chain of residue 31 (tyrosine or phenylalanine) in vertebrate DHFRs to adopt a conformation in which the opening to the pteridine binding site is too narrow to allow the substrate to diffuse away rapidly. A reverse conformational change of residue 31 is proposed to be required for tetrahydrofolate release.  相似文献   

9.
Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21----Leu and Asp 26----Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. 1H, 13C, and 31P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. 1H NMR studies of the Trp 21----Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 A away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21----Leu mutant indicate that the delicately poised equilibria can be perturbed. For example, in the case of the ternary complex formed between enzyme, trimethoprim, and NADP+, two almost equally populated conformations (forms I and II) are seen with the wild-type enzyme but only form II (the one in which the nicotinamide ring of the coenzyme is extended away from the enzyme structure and into the solvent) is observed for the mutant enzyme complex. It appears that the Trp 21----Leu substitution has a major effect on the binding of the nicotinamide ring of the coenzyme. For the Asp 26----Glu enzyme there is a change in the bound conformation of the substrate folate. Further indications that some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim come from the observation of a change in the dynamics of the bound trimethoprim molecule as seen from the increased rate of the flipping of the 13C-labeled benzyl ring and the increased rate of the N1-H bond breaking.  相似文献   

10.
A Gafni 《Biochemistry》1978,17(7):1301-1304
The CD (circular dichroism) and CPL (circular polarization of luminescence) spectra of NADPH in aqueous solution were studied and found to be markedly different. The spectra were not affected by cleavage of the coenzyme molecule with phosphodiesterase. The differences are thus not due to the existence of extended and folded conformations of NADPH and it is concluded that they originate in excited state conformational changes of the nicotinamide--ribose fragment. Opposite signs of both the CD and CPL spectra were observed for NADH bound to horse liver alcohol dehydrogenase and to beef heart lactate dehydrogenase indicating structural differences between the nicotinamide binding sites. The binding of substrate analogues to enzyme--coenzyme complexes did not affect the CD spectra and hence no significant conformational changes are induced upon formation of the ternary complexes. No changes in the CPL spectrum of NADH bound to lactate dehydrogenase were observed upon adding oxalate to form the ternary complex. Marked differences were found between the CPL spectra of binary and ternary complexes with liver alcohol dehydrogenase, while the CD spectra of these complexes were identical. It is concluded that a conformational change of the excited NADH molecule occurs in the binary but not in the ternary complex involving LADH, thus indicating an increased rigidity of the latter complex.  相似文献   

11.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

12.
H T Cheung  B Birdsall  J Feeney 《FEBS letters》1992,312(2-3):147-151
13C NMR studies of 13C-labelled ligands bound to dihydrofolate reductase provide (DHFR) a powerful means of detecting and characterizing multiple bound conformations. Such studies of complexes of Escherichia coli DHFR with [4,7,8a,9-13C]- and [2,4a,6-13C]methotrexate (MTX) and [4,6,8a-13C]- and [2,4a,7,9-13C]folic acid confirm that in the binary complexes, MTX binds in two conformational forms and folate binds as a single conformation. Earlier studies on the corresponding complexes with Lactobacillus casei DHFR indicated that, in this case, MTX binds as a single conformation whereas folate binds in multiple conformational forms (both in its binary complex and ternary complex with NADP+); two of the bound conformational states for the folate complexes are very different from each other in that there is a 180 degrees difference in their pteridine ring orientation. In contrast, the two different conformational states observed for MTX bound to E. coli DHFR do not show such a major difference in ring orientation and bind with N1 protonated in both forms. The major difference appears to involve the manner in which the 4-NH2 group of MTX binds to the enzyme (although the same protein residues are probably involved in both interactions). Addition of either NADP+ or NADPH to the E. coli DHFR-MTX complex results in a single set of 13C signals for bound methotrexate consistent with only one conformational form in the ternary complexes.  相似文献   

13.
For any detailed NMR conformational study of a protein-ligand complex it is essential to have specific resonance assignments. We have now assigned the pyrophosphate 31P resonances in spectra of NADPH bound to Lactobacillus casei dihydrofolate reductase (DHFR) by using a combination of 1H-31P-heteronuclear shift-correlation (HETCOR), 1H-31P-heteronuclear multiple-quantum-coherence correlation spectroscopy (HMQC-COSY), 1H-1H COSY, homonuclear Hartmann-Hahn (HOHAHA) and NOE spectroscopy (NOESY) experiments. The nicotinamide pyrophosphate phosphorus, P(n), has been unequivocally assigned to a signal (-14.07 ppm) which shows a large 3JP-O-C-H coupling constant. Such a coupling constant when combined with the appropriate Karplus relationship provides conformational information about the P-O-C-H torsion angle. The torsion angle changes by 65 degrees +/- 10 degrees for the binary complex compared with the value in free NADPH. The observed coupling constants for the binary (DHFR--NADPH) and ternary (DHFR--NADPH--methotrexate) complexes (12.3 and 10.5 +/- 0.6 Hz, respectively) indicate that the pyrophosphate group has a similar conformation in the two complexes.  相似文献   

14.
The analogues of the coenzyme NADP+, nicotinamide--8-bromo-adenine dinucleotide phosphate (Nbr8ADP+) and 3-iodopyridine--adenine dinucleotide phosphate (io3PdADP+), were prepared. Nbr8ADP+ was found to be active in the hydrogen transfer adn io3PdADP+ is a coenzyme competitive inhibitor for 6-phosphogluconate dehydrogenase. The binding of NADP+, NADPH and NADPH together with 6-phosphogluconate as well as that of both analogues to crystals of the enzyme 6-phosphogluconate dehydrogenase has been investigated at 0.6-nm resolution using difference electron density maps. The molecules bind in a similar position in a cleft in the enzyme subunit distant from the dimer interface. The orientation of the coenzyme in the site has been determined from the io3PdADP+ -NADP+ difference density. The ternary complex difference density extends beyond that of the nicotinamide moiety of the coenzyme and tentatively indicates substrate binding. No clear identification of the bromine atom of Nbr8ADP+ can be made. However, the analogue is bound more deeply in the cleft than is NADP+. The NADPH density is the most clearly defined and has thus been used to fit a molecular model using an interactive graphics system, checking for preferred geometry. A possible conformation is presented which is significantly different from that of NAD+ in the lactate dehydrogenase ternary complex.  相似文献   

15.
M F Carlier  D Pantaloni 《Biochemistry》1976,15(21):4703-4712
The binding of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide phosphate (NADP) dependent isocitrate dehydrogenase from beef liver cytoplasm was studied by several equilibrium techniques (ultracentrifugation, molecular sieving, ultrafiltration, fluorescence). Two binding sites (per dimeric enzyme molecule) were found with slightly different dissociation constants (0.5 and 0.12 muM) and fluorescence yields (7.7 and 6.3). A ternary complex was formed between enzyme, isocitrate, and NADPH, in which NADPH dissociation constant was 5 muM. On the contrary, no binding of NADPH to the enzyme took place in the presence of magnesium isocitrate. Dialysis experiments showed the existence of 1 NADP binding site/dimer, with a dissociation constant of 26 muM. When NADPH was present with the enzyme in the proportion of 1 molecule/dimer, the dissociation constant of NADP was decreased fourfold, reaching a value quantitatively comparable to the Michaelis constant. The kinetics of coenzyme binding was followed using the stopped-flow technique with fluorescence detection. NADPH binding to the enzyme occurred through one fast reaction (k1 = 20 muM-1 s-1). Dissociation of NADPH took place upon NADP binding; however, equilibrium as well as kinetic data were incompatible with a simple competition scheme. Dissociation of NADPH from the enzyme upon magnesium isocitrate binding was preceded by the formation of a transitory ternary complex in which the fluorescence of NADPH was only about 30% of that in the enzyme-NADPH complex. Then interaction between the conenzymes and the involvement of ternary complexes in the catalytic mechanism are discussed in relation with what is known about the regulatory role of the coenzyme (Carlier, M. F., and Pantaloni, D. (1976), Biochemistry, 15, 1761-1766).  相似文献   

16.
A remarkable correlation has been discovered between fluorescence lifetimes of bound NADPH and rates of hydride transfer among mutants of dihydrofolate reductase (DHFR) from Escherichia coli. Rates of hydride transfer from NADPH to dihydrofolate change by a factor of 1,000 for the series of mutant enzymes. Since binding constants for the initial complex between coenzyme and DHFR change by only a factor of 10, the major portion of the change in hydride transfer must be attributed to losses in transition-state stabilization. The time course of fluorescence decay for NADPH bound to DHFR is biphasic. Lifetimes ranging from 0.3 to 0.5 ns are attributed to a solvent-exposed dihydronicotinamide conformation of bound coenzyme which is presumably not active in catalysis, while decay times (tau 2) in the range of 1.3 to 2.3 ns are assigned to a more tightly bound species of NADPH in which dihydronicotinamide is sequestered from solvent. It is this slower component that is of interest. Ternary complexes with three different inhibitors, methotrexate, 5-deazafolate, and trimethoprim, were investigated, along with the holoenzyme complex; 3-acetylNADPH was also investigated. Fluorescence polarization decay, excitation polarization spectra, the temperature variation of fluorescence lifetimes, fluorescence amplitudes, and wavelength of absorbance maxima were measured. We suggest that dynamic quenching or internal conversion promotes decay of the excited state in NADPH-DHFR. When rates of hydride transfer are plotted against the fluorescence lifetime (tau 2) of tightly bound NADPH, an unusual correlation is observed. The fluorescence lifetime becomes longer as the rate of catalysis decreases for most mutants studied. However, the fluorescence lifetime is unchanged for those mutations that principally alter the binding of dihydrofolate while leaving most dihydronicotinamide interactions relatively undisturbed. The data are interpreted in terms of possible dynamic motions of a flexible loop region in DHFR which closes over both substrate and coenzyme binding sites. These motions could lead to faster rates of fluorescence decay in holoenzyme complexes and, when correlated over time, may be involved in other motions which give rise to enhanced rates of catalysis in DHFR.  相似文献   

17.
Rubach JK  Plapp BV 《Biochemistry》2003,42(10):2907-2915
Amino acid residues Thr-178, Val-203, and Val-292, which interact with the nicotinamide ring of the coenzyme bound to alcohol dehydrogenase (ADH), may facilitate hydride transfer and hydrogen tunneling by orientation and dynamic effects. The T178S, T178V, V203A, V292A, V292S, and V292T substitutions significantly alter the steady state and transient kinetics of the enzyme. The V292A, V292S, and V292T enzymes have decreased affinity for coenzyme (NAD+ by 30-50-fold and NADH by 35-75-fold) as compared to the wild-type enzyme. The substitutions in the nicotinamide binding site decrease the rate constant of hydride transfer for benzyl alcohol oxidation by 3-fold (for V292T ADH) to 16-fold (for V203A ADH). The modest effects suggest that catalysis does not depend critically on individual residues and that several residues in the nicotinamide binding site contribute to catalysis. The structures of the V292T ADH-NAD+-pyrazole and wild-type ADH-NAD+-4-iodopyrazole ternary complexes are very similar. Only subtle changes in the V292T enzyme cause the large changes in coenzyme binding and the small change in hydride transfer. In these complexes, one pyrazole nitrogen binds to the catalytic zinc, and the other nitrogen forms a partial covalent bond with C4 of the nicotinamide ring, which adopts a boat conformation that is postulated to be relevant for hydride transfer. The results provide an experimental basis for evaluating the contributions of dynamics to hydride transfer.  相似文献   

18.
The interaction of type II R67 dihydrofolate reductase (DHFR) with its cofactor nicotinamide adenine dinucleotide phosphate (NADP(+)) has been studied using nuclear magnetic resonance (NMR). Doubly labeled [U-(13)C,(15)N]DHFR was obtained from Escherichia coli grown on a medium containing [U-(13)C]-D-glucose and (15)NH(4)Cl, and the 16 disordered N-terminal amino acids were removed by treatment with chymotrypsin. Backbone and side chain NMR assignments were made using triple-resonance experiments. The degeneracy of the amide (1)H and (15)N shifts of the tetrameric DHFR was preserved upon addition of NADP(+), consistent with kinetic averaging among equivalent binding sites. Analysis of the more titration-sensitive DHFR amide resonances as a function of added NADP(+) gave a K(D) of 131 +/- 50 microM, consistent with previous determinations using other methodology. We have found that the (1)H spectrum of NADP(+) in the presence of the R67 DHFR changes as a function of time. Comparison with standard samples and mass spectrometric analysis indicates a slow conversion of NADP(+) to NAD(+), i.e., an apparent NADP(+) phosphatase activity. Studies of this activity in the presence of folate and a folate analogue support the conclusion that this activity results from an interaction with the DHFR rather than a contaminating phosphatase. (1)H NMR studies of a mixture of NADP(+) and NADPH in the presence of the enzyme reveal that a ternary complex forms in which the N-4A and N-4B nuclei of the NADPH are in the proximity of the N-4 and N-5 nuclei of NADP(+). Studies using the NADP(+) analogue acetylpyridine adenosine dinucleotide phosphate (APADP(+)) demonstrated a low level of enzyme-catalyzed hydride transfer from NADPH. Analysis of DHFR backbone dynamics revealed little change upon binding of NADP(+). These additional catalytic activities and dynamic behavior are in marked contrast to those of type I DHFR.  相似文献   

19.
Abstract

Scanning microcalorimetry was used for the study of thermal denaturation of E.coli and bovine liver dihydrofolate reductases (cDHFR and bDHFR, respectively) and their complexes with NADPH, trimethoprim (TMP) and methotrexate (MTX) at pH 6.8. It was shown that the denaturation temperature of bDHFR is 7.2°C less than that of cDHFR and that ionic strength is equally important for the thermostability and cooperativity of the denaturation process of the two proteins. Binding of antifolate compounds significantly stabilizes DHFR against heat denaturation. The stabilizing effect and the transition cooperativity depend on the nature of the inhibitor, the presence of NADPH and the origin of the enzyme. The dependence of calorimetric denaturation enthalpy (calculated per gram of protein) on denaturation temperature for DHFRs, their complexes with NADPH and binary/ternary complexes with TMP/MTX fits to the same straight line with the slope of 0.66 J/K g. This relatively high value indicates an essential role of hydrophobic contacts in the stabilization of DHFR structure. The change of denaturation temperatures in binary complexes with MTX/TMP (in comparison with the free enzymes) is as much as 14.2°C/8.5°C and 13.3°C/3.2°C for cDHFR and bDHFR, respectively. The same change in ternary complexes with MTX/TMP is much more pronounced and equals to 21.9°C/16.8°C and 29.0°C/16.4°C. The vast difference of binary and ternary complexes thermostability demonstrates the important role of cofactor in the stabilization of enzyme. Moving from binary to ternary systems causes a significant increase in denaturation temperatures, even when corresponding association constants do not change (cDHFR binary/ternary complexes with MTX) or increases very slightly (bDHFR binary/ternary complexes with TMP). In all other cases the increase of denaturation temperature  相似文献   

20.
Cody V  Galitsky N  Rak D  Luft JR  Pangborn W  Queener SF 《Biochemistry》1999,38(14):4303-4312
Structural data from two independent crystal forms (P212121 and P21) of the folate (FA) binary complex and from the ternary complex with the oxidized coenzyme, NADP+, and recombinant Pneumocystis carinii dihydrofolate reductase (pcDHFR) refined to an average of 2.15 A resolution, show the first evidence of ligand-induced conformational changes in the structure of pcDHFR. These data are also compared with the crystal structure of the ternary complex of methotrexate (MTX) with NADPH and pcDHFR in the monoclinic lattice with data to 2.5 A resolution. Comparison of the data for the FA binary complex of pcDHFR with those for the ternary structures reveals significant differences, with a >7 A movement of the loop region near residue 23 that results in a new "flap-open" position for the binary complex, and a "closed" position in the ternary complexes, similar to that reported for Escherichia coli (ec) DHFR complexes. In the orthorhombic lattice for the binary FA pcDHFR complex, there is also an unwinding of a short helical region near residue 47 that places hydrophobic residues Phe-46 and Phe-49 toward the outer surface, a conformation that is stabilized by intermolecular packing contacts. The pyrophosphate moiety of NADP+ in the ternary folate pcDHFR complexes shows significant differences in conformation compared with that observed in the MTX-NADPH-pcDHFR ternary complex. Additionally, comparison of the conformations among these four pcDHFR structures reveals evidence for subdomain movement that correlates with cofactor binding states. The larger binding site access in the new "flap-open" loop 23 conformation of the binary FA complex is consistent with the rapid release of cofactor from the product complex during catalysis as well as the more rapid release of substrate product from the binary complex as a result of the weaker contacts of the closed loop 23 conformation, compared to ecDHFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号