首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core promoter structure in the oomycete Phytophthora infestans   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
Strains of the gastrointestinal species Lactobacillus reuteri were electrotransformed with plasmid constructs containing the endo-1,3-1,4-beta-glucanase gene (bglM) of Bacillus macerans. The enzyme was expressed and secreted by the lactobacilli. A plasmid construct containing the bglM gene lacking its promoter was derived and was demonstrated to be useful as a promoter probe vector.  相似文献   

3.
A number of genes have been shown to be transcribed specifically during sporulation in Saccharomyces cerevisiae, yet their developmental function is unknown. The SPR1 gene is transcribed during only the late stages of sporulation. We have sequenced the SPR1 gene and found that it has extensive DNA and protein sequence homology to the S. cerevisiae EXG1 gene which encodes an exo-1,3-beta-glucanase expressed during vegetative growth (C. R. Vasquez de Aldana, J. Correa, P. San Segundo, A. Bueno, A. R. Nebrada, E. Mendez, and F. del Ray, Gene 97:173-182, 1991). We show that spr1 mutant cells do not hydrolyze p-nitrophenyl-beta-D-glucoside or laminarin in a whole-cell assay for exo-1,3-beta-glucanases. In addition to the absence of this enzymatic activity, spr1 mutant spores exhibit reduced thermoresistance relative to isogenic wild-type spores. These observations are consistent with the notion that SPR1 encodes a sporulation-specific exo-1,3-beta-glucanase.  相似文献   

4.
5.
The endo-1,3-beta-glucanase (EC 3.2.1.6) secreted into the culture medium by cells of Candida utilis was isolated and purified to homogeneity on polyacrylamide-gel electrophoresis and in ultracentrifugation studies (s20,w = 1.97S). The purified enzyme represented only 0.001% of the total 1,3-beta-glucanase activity, the remainder being due to an exo-1,3-beta-glucanase enzyme, and behaved as an acidic glycoprotein (pI 3.3) in isoelectric-focusing experiments. The mol.wt. was estimated to be 21 000 by gel filtration and polyacrylamide-gel electrophoresis. Studies on the hydrolysis of different substrates showed that the enzyme was only able to break down (1 leads to 3)-beta-linkages, by an endo-splitting mechanism. Glucono-delta-lactone, D-glucoronolactone and heavy metal ions such as Hg2+ were inhibitors of the enzyme activity. The function of this endo-beta-glucanase in C. utilis is discussed.  相似文献   

6.
Structure of a Ruminococcus albus endo-1,4-beta-glucanase gene.   总被引:5,自引:2,他引:3       下载免费PDF全文
K Ohmiya  T Kajino  A Kato    S Shimizu 《Journal of bacteriology》1989,171(12):6771-6775
A chromosomal DNA fragment encoding an endo-1,4-beta-glucanase I (Eg I) gene from Ruminococcus albus cloned and expressed in Escherichia coli with pUC18 was fully sequenced by the dideoxy-chain termination method. The sequence contained a consensus promoter sequence and a structural amino acid sequence. The initial 43 amino acids of the protein were deduced to be a signal sequence, since they are missing in the mature protein (Eg I). High homology was found when the amino acid sequence of the Eg I was compared with that of endoglucanase E from Clostridium thermocellum. Codon usage of the gene was not biased. These results suggested that the properties of the Eg I gene from R. albus was specified from the known beta-glucanase genes of the other organisms.  相似文献   

7.
Two genes encoding distinct 1,3-beta-glucanases have been cloned from Bacillus circulans and expressed in Escherichia coli. A cosmid library of B. circulans WL-12 DNA was constructed in the broad-host-range cosmid pLAFR1 and screened in E. coli for clones which exhibited 1,3-beta-glucanase activity. Two 1,3-beta-glucanase-positive clones were identified which contained genes encoding two independent 1,3-beta-glucanases as shown by biochemical, physical and molecular analyses. The cosmids, designated pMON5401 (27.1 kb insert) and pMON5402 (24.7 kb insert), encoded 68 kDa and 40 kDa 1,3-beta-glucanases, respectively. Both 1,3-beta-glucanases were purified from their respective E. coli strains, characterized biochemically, and were shown to exhibit lytic activity against purified yeast cell wall preparations.  相似文献   

8.
9.
10.
A gene (EGL2) encoding an endo-1,4-beta-glucanase in peas has been cloned as a homologue of EGL1. EGL2 encodes a polypeptide of 506 amino acids, including a 24-mer putative signal polypeptide. The gene product contains a domain conserved in endo-1,4-beta-glucanase (family 9) showing 60% amino acid identity to EGL1. EGL2 mRNA was accumulated only in the elongating regions of pea stems, although EGL1 mRNA was abundant in both elongating and non-elongating tissues. However, the level of EGL2 mRNA was not increased by the treatment with sucrose and auxin in pea segments. These results suggest that the expression of EGL2 either requires the presence of other factors related to the auxin effect or occurs independent of auxin in the elongating pea stems.  相似文献   

11.
An exo-1,3-beta-glucanase has been isolated from cultural filtrate of T. viride AZ36. The N-terminal sequence of the purified enzyme (m = 61 +/- 1 kDa) showed no significant homology to other known glucanases. The 1,3-beta-glucanase displayed high activity against laminarins, curdlan, and 1,3-beta-oligoglucosides, but acted slowly on 1,3-1,4-beta-oligoglucosides. No significant activity was detected against high molecular mass 1,3-1,4-beta-glucans. The enzyme carried out hydrolysis with inversion of the anomeric configuration. Whereas only glucose was released from the nonreducing terminus during hydrolysis of 1,3-beta-oligoglucosides, transient accumulation of gentiobiose was observed during hydrolysis of laminarins. The gentiobiose was subsequently degraded to glucose. The Michaelis constants Km and Vmax have been determined for the hydrolysis of 1,3-beta-oligoglucosides with degrees of polymerization ranging from 2 to 6. Based on these data, binding affinities for subsites were calculated. Substrate binding site contained at least five binding sites for sugar residues.  相似文献   

12.
A biphasic synthesis of 1,3-beta-glucanase occurred when cells of Saccharomyces cerevisiae AP-1 (a/alpha) were incubated in sporulation medium. The capacity to degrade laminarin increased very slowly during the first 7 h but at a much faster rate thereafter. Changes occurring during the first period were not sporulation specific since the moderate increase in activity against laminarin was insensitive to glutamine and hydroxyurea and also took place in the nonsporulating strain S. cerevisiae AP-1 (alpha/alpha). However, the changes taking place after 7 h must be included in the group of sporulation-specific events since they were inhibited by glucose, glutamine, and hydroxyurea and did not occur in the nonsporulating diploid. Consequently, only when the cells had been incubated for at least 7 h in sporulation medium did full induction of activity against laminarin take place upon shift to a medium which favored vegetative growth. Changes in the relative proportions of the vegetative glucanases, namely, endo- and exo-1,3-beta-glucanase, and the formation of a new sporulation-specific 1,3-beta-glucanase account for the observed events and are the consequence of the expression of the sporulation program.  相似文献   

13.
An 8.5-kb cosmid containing the KORRIGAN gene complements the cellulose-deficient rsw2-1 mutant of Arabidopsis. Three temperature-sensitive alleles of rsw2 show single amino acid mutations in the putative endo-1,4-beta-glucanase encoded by KOR. The F1 from crosses between kor-1 and rsw2 alleles shows a weak, temperature-sensitive root phenotype. The shoots of rsw2-1 seedlings produce less cellulose and accumulate a short chain, readily extractable glucan resembling that reported for rsw1 (which is defective in a putative glycosyltransferase required for cellulose synthesis). The double mutant (rsw2-1 rsw1) shows further reductions in cellulose production relative to both single mutants, constitutively slow root growth, and enhanced temperature-sensitive responses that are typically more severe than in either single mutant. Abnormal cytokinesis and severely reduced birefringent retardation in elongating root cell walls of rsw2 link the enzyme to cellulose production for primary cell walls and probably cell plates. The Rsw2(-) phenotype generally resembles the Kor(-) and cellulose-deficient Rsw1(-) phenotypes, but anther dehiscence is impaired in Rsw2-1(-). The findings link a second putative enzyme activity to cellulose synthesis in primary cell walls of Arabidopsis and further increases the parallels to cellulose synthesis in Agrobacterium tumefaciens where the celA and celC genes are required and encode a putative glycosyltransferase and an endo-1,4-beta-glucanase related to RSW1 and KOR, respectively.  相似文献   

14.
The extracellular endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1 were analyzed by high-performance liquid chromatography (HPLC) by using DEAE ion-exchange, hydroxylapatite, and gel filtration chromatography and polyacrylamide gel electrophoresis (PAGE). Two endo-1,4-beta-glucanase peaks were resolved by DEAE-HPLC and termed endoglucanases A and B. Carboxymethyl cellulose (CMC) zymograms were achieved by enzyme separation using nondenaturing PAGE followed by incubation of the gel on top of a CMC-agarose gel. This revealed no less than 13 and 5 endo-1,4-beta-glucanase components present in endoglucanases A and B, respectively. Hydroxylapatite chromatography of endoglucanases A and B revealed one activity peak for each preparation, which contained 4 and 5 endo-1,4-beta-glucanase components, respectively. Gel filtration chromatography of endoglucanase A following hydroxylapatite chromatography resolved the most active carboxymethylcellulase (CMCase) component from other endo-1,4-beta-glucanase activities. Gel filtration of endoglucanase B following hydroxylapatite chromatography showed one CMCase activity peak. Protein stains of sodium dodecyl sulfate-PAGE and nondenaturing PAGE gels of endoglucanases A and B from hydroxylapatite and gel filtration chromatography revealed multiple protein components. When xylan was substituted for CMC in zymograms, identical separation patterns for CMCase and xylanase activities were observed for both endoglucanases A and B. These data suggest that both 1,4-beta linkage-hydrolyzing activities reside on the same polypeptide or protein complex. The highest endo-1,4-beta-glucanase-specific activities were observed following DEAE-HPLC chromatography, with 16.2 and 7.5 mumol of glucose equivalents per min per mg of protein for endoglucanases A and B, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The extracellular endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1 were analyzed by high-performance liquid chromatography (HPLC) by using DEAE ion-exchange, hydroxylapatite, and gel filtration chromatography and polyacrylamide gel electrophoresis (PAGE). Two endo-1,4-beta-glucanase peaks were resolved by DEAE-HPLC and termed endoglucanases A and B. Carboxymethyl cellulose (CMC) zymograms were achieved by enzyme separation using nondenaturing PAGE followed by incubation of the gel on top of a CMC-agarose gel. This revealed no less than 13 and 5 endo-1,4-beta-glucanase components present in endoglucanases A and B, respectively. Hydroxylapatite chromatography of endoglucanases A and B revealed one activity peak for each preparation, which contained 4 and 5 endo-1,4-beta-glucanase components, respectively. Gel filtration chromatography of endoglucanase A following hydroxylapatite chromatography resolved the most active carboxymethylcellulase (CMCase) component from other endo-1,4-beta-glucanase activities. Gel filtration of endoglucanase B following hydroxylapatite chromatography showed one CMCase activity peak. Protein stains of sodium dodecyl sulfate-PAGE and nondenaturing PAGE gels of endoglucanases A and B from hydroxylapatite and gel filtration chromatography revealed multiple protein components. When xylan was substituted for CMC in zymograms, identical separation patterns for CMCase and xylanase activities were observed for both endoglucanases A and B. These data suggest that both 1,4-beta linkage-hydrolyzing activities reside on the same polypeptide or protein complex. The highest endo-1,4-beta-glucanase-specific activities were observed following DEAE-HPLC chromatography, with 16.2 and 7.5 mumol of glucose equivalents per min per mg of protein for endoglucanases A and B, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Upon fractionating Saccharomyces cerevisiae asynchronous cultures by sucrose density gradient centrifugation in a zonal rotor and examining the exo-1,3-beta-glucanase and deoxyribonucleic acid content of the cells, a periodic step increase in the activity of this enzyme was observed, indicating a discontinuous pattern of synthesis or activation of exo-1,3-beta-glucanase during the mitotic cycle at the transition from the S to the G(2) phase. Similar results were obtained for endo-1,3-beta-glucanase by assaying activity against oxidized laminarin in permeabilized cells, suggesting that the synthesis of endo-1,3-beta-glucanase is controlled in the same way. When a and alpha strains were mated, the specific activity of cell extracts against laminarin, oxidized laminarin, and pustulan remained constant while zygote formation was taking place. However, when growth resumed, active synthesis of 1,3-beta-glucanases took place as shown by the occurrence of a significant increase in the specific activity against the three substrates. Specific changes in the level of glucan degradative enzymes, not observed in a haploid parental strain, occurred when the diploid S. cerevisiae AP-1 was induced to sporulate. The sporulation process triggered the activation of first the pustulan degradative capacity and then the capacity to hydrolyze oxidized laminarin. The specific activity against this substrate was 10 times higher than that against pustulan.  相似文献   

17.
18.
Two enzyme complexes, each with beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21), beta-xylosidase (beta-D-xylan xylohydrolase, EC 3.2.1.37), and 1,3-beta-glucanase (laminarinase, EC 3.2.1.39) activity, were purified to near homogeneity from the cellulolytic fungus Trichoderma harzianum E58. The two complexes had the same isoelectric point of pH 8.3 and identical subunit molecular masses of 75,400 daltons. The two complexes were also similar in that all activities were sensitive to inhibition by mercuric chloride (2 mM) and D-glucono-1,5-lactone (0.2% w/v). The activity ratios of the major and minor complexes were 1:1.7:4.3 and 1:1.6:3.1 for the beta-xylosidase, beta-glucosidase, and 1,3-beta-glucanase, respectively. Both complexes had approximately the same Km values for p-nitrophenyl beta-D-glucopyranoside and salicin. The pH optima of corresponding activities of the two complexes were also similar. The major and minor complexes differed in that the Km of the former for laminarin was almost threefold lower than that of the latter. Whereas all three activities of the minor complexes were inhibited by D-glucono-1,5-lactone with the same inhibition constant, the beta-glucosidase and 1,3-beta-glucanase of the major complex had inhibition constants which differed by more than 80,000 times. In addition, the inhibition on the 1,3-beta-glucanase in the major and minor complexes using D-glucono-1,5-lactone were noncompetitive and competitive, respectively. From the inhibition studies, the beta-glucosidase, beta-xylosidase, and 1,3-beta-glucanase activities in the minor complex were deduced to be more interdependent than the same activities in the major complex.  相似文献   

19.
An endo-1,4-beta-glucanase (EgI) gene isolated from Ruminococcus albus was deleted at the 5'-flanking region by gene truncation or at the 3'-flanking region by insertion of an omega (omega) fragment with a universal stop codon at the EcoRI or BamHI site. These modified genes were integrated into pUC vectors to construct chimera plasmids for Escherichia coli. The truncated EgIs were produced from transformants (E. coli) harboring the chimera plasmids. An EgI with a 15-amino-acid N-terminal deletion exibited higher activity at lower pH and temperature compared with the activity of the original EgI. The EgIs with 59- and 75-amino-acid deletions from the N and C terminals, respectively, had no activity, indicating that both terminal moieties are essential for enzyme activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号