首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.  相似文献   

3.
普通和稀释培养基研究太湖沉积物可培养细菌的多样性   总被引:23,自引:2,他引:23  
采用普通牛肉汁培养基和 10倍稀释的普通牛肉汁培养基 (以下简称稀释培养基 )研究太湖沉积物中细菌多样性 ,发现在稀释培养基上生长的细菌数量普遍是在普通牛肉汁琼脂培养基上生长的细菌数量的 3~ 5倍。分离得到纯培养物的 16SrDNA部分序列 (5′端约 5 0 0bp)分析表明 ,不同培养基上生长的优势细菌类群存在差别 :普通培养基生长的细菌主要为γ_Proteobacteria(35. 1% ) ,其次为Actinobacteria(2 4 5 % )和Firmicutes(2 2 . 3% )等类群 ,其中大部分细菌与假单胞菌属 (Pseudomoas)、芽孢杆菌属 (Bacillus)和节杆菌属 (Archrobacter)细菌的系统关系密切 ;稀释培养基生长的细菌则主要为Actinobacteria(2 7. 1% )、Firmicutes(2 5 . 7% )、α_Proteobacteria(2 1. 4 % )和γ_Proteobacteria(15. 7% )等类群 ,与芽孢杆菌属 (Bacillus) (2 5. 7% )发育系统关系密切的细菌为优势属。研究结果表明同时采用两种培养基有助于从太湖沉积物中分离到更多种微生物。  相似文献   

4.
5.
In the present study, sludge sample from biological treatment plant of a textile industry was acclimatized for decolourization of azo dye Direct Black 38 (DB38). A continuous culture experiment showed that the acclimatized sludge could decolourize 76% of 100mg/l DB38. Bacterial community in the sludge was analyzed using culture-independent molecular approach to get the complete picture of its diversity. RFLP analysis of its 16S rRNA gene library divided the clones into 14 distinct groups. Phylogenetic analysis of these groups showed that they belonged to five different bacterial lineages: beta- and gamma-Proteobacteria (3 and 4 respectively), Bacteroidetes (2), Firmicutes (4) and Actinobacteria (1). The largest number of clones was found to cluster in the gamma-Proteobacteria (54%), followed by Firmicutes (19%), beta-Proteobacteria (14%), Bacteroidetes (10%) and Actinobacteria (3%).  相似文献   

6.
7.
The chemical signaling mechanism known as “bacterial quorum sensing” (QS) is normally interpreted as allowing bacteria to detect their own population density, in order to coordinate gene expression across a colony. However, the release of the chemical signal can also be interpreted as a means for one or a few cells to probe the local physical properties of their microenvironment. We have studied the behavior of the LuxI/LuxR QS circuit of Vibrio fischeri in tightly confining environments where individual cells detect their own released signals. We find that the lux genes become activated in these environments, although the activation onset time shows substantial cell-to-cell variability and little sensitivity to the confining volume. Our data suggest that noise in gene expression could significantly impact the utility of LuxI/LuxR as a probe of the local physical environment.  相似文献   

8.
I. A. Khmel 《Microbiology》2006,75(4):390-397
Quorum sensing (QS) is a specific type of regulation of gene expression in bacteria; it is dependent on the population density. QS systems include two obligate components: a low-molecular-weight regulator (autoinducer), readily diffusible through the cytoplasmic membrane, and a regulatory receptor protein, which interacts with the regulator. As the bacterial population reaches a critical level of density, autoinducers accumulate to a necessary threshold value and abrupt activation (induction) of certain genes and operons occurs. By means of low-molecular-weight regulators, bacteria accomplish communication between cells belonging to the same or different species, genera, and even families. QS systems have been shown to play a key role in the regulation of various metabolic processes in bacteria and to function as global regulators of the expression of bacterial genes. Data are presented on different types of QS systems present in bacteria of various taxonomic groups, on the species specificity of these systems, and on communication of bacteria by means of QS systems. The possibility is considered of using QS regulation systems as targets while combating bacterial infections; other applied aspects of QS investigation are discussed.  相似文献   

9.
Khmel' IA 《Mikrobiologiia》2006,75(4):457-464
Quorum sensing (QS) is a specific type of regulation of gene expression in bacteria; it is dependent on the population density. QS systems include two obligate components: a low-molecular-weight regulator (autoinducer), readily diffusible through the cytoplasmic membrane, and a regulatory receptor protein, which interacts with the regulator. As the bacterial population reaches a critical level of density, autoinducers accumulate to a necessary threshold value and abrupt activation (induction) of certain genes and operons occurs. By means of low-molecular-weight regulators, bacteria accomplish communication between cells belonging to the same or different species, genera, and even families. QS systems have been shown to play a key role in the regulation of various metabolic processes in bacteria and to function as global regulators of the expression of bacterial genes. Data are presented on different types of QS systems present in bacteria of various taxonomic groups, on the species specificity of these systems, and on communication of bacteria by means of QS systems. The possibility is considered of using QS regulation systems as targets while combating bacterial infections; other applied aspects of QS investigation are discussed.  相似文献   

10.
AI-3 synthesis is not dependent on luxS in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The quorum-sensing (QS) signal autoinducer-2 (AI-2) has been proposed to promote interspecies signaling in a broad range of bacterial species. AI-2 is spontaneously derived from 4,5-dihydroxy-2,3-pentanedione that, along with homocysteine, is produced by cleavage of S-adenosylhomocysteine (SAH) and S-ribosylhomocysteine by the Pfs and LuxS enzymes. Numerous phenotypes have been attributed to AI-2 QS signaling using luxS mutants. We have previously reported that the luxS mutation also affects the synthesis of the AI-3 autoinducer that activates enterohemorrhagic Escherichia coli virulence genes. Here we show that several species of bacteria synthesize AI-3, suggesting a possible role in interspecies bacterial communication. The luxS mutation leaves the cell with only one pathway, involving oxaloacetate and l-glutamate, for de novo synthesis of homocysteine. The exclusive use of this pathway for homocysteine production appears to alter metabolism in the luxS mutant, leading to decreased levels of AI-3. The addition of aspartate and expression of an aromatic amino acid transporter, as well as a tyrosine-specific transporter, restored AI-3-dependent phenotypes in an luxS mutant. The defect in AI-3 production, but not in AI-2 production, in the luxS mutant was restored by expressing the Pseudomonas aeruginosa S-adenosylhomocysteine hydrolase that synthesizes homocysteine directly from SAH. Furthermore, phenotype microarrays revealed that the luxS mutation caused numerous metabolic deficiencies, while AI-3 signaling had little effect on metabolism. This study examines how AI-3 production is affected by the luxS mutation and explores the roles of the LuxS/AI-2 system in metabolism and QS.  相似文献   

11.
摘要:【目的】研究铜绿假单胞菌中群体感应系统(Quorum sensing, QS)与III型分泌系统(Type III secretion system, T3SS)的关系。【方法】通过基因敲除的方法破坏铜绿假单胞菌QS系统相关基因,将T3SS相关基因exoS、exoY、exoT、exsD-pscA-L启动子-报道子luxCDABE融合体整合到野生型菌株及QS系统突变菌株的染色体组上,通过检测启动子活性,比较这些基因在不同菌株中的表达情况。【结果】研究结果表明,T3SS中的exoS与exoT在pqsR基因突变体中的表达有明显的增强,Rhl系统对这四种基因的表达具有抑制作用,而Las系统存在与否对T3SS基本没有影响。【结论】铜绿假单胞菌中的Rhl系统和奎诺酮信号(Pseudomonas Quinolone Signal, PQS)系统对T3SS相关基因的表达具有重要的调节作用。  相似文献   

12.
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N‐acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL‐mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram‐negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid‐type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194‐amino‐acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF‐mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c‐di‐GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.  相似文献   

13.
目的研究临床多重耐药铜绿假单胞菌群体感应(QS)系统与主动外排泵MexAB-OprM系统基因表达水平与抗生素耐药关系。方法收集苏州市立医院和上海市江湾医院2011年2月至6月间临床标本中分离的铜绿假单胞菌,定量分析细菌生物被膜形成能力;MIC法检测细菌抗生素耐药性,用多重聚合酶链反应(PCR)扩增群体感应系统lasI、lasR及主动外排泵系统mexA基因,实时定量逆转录RT-PCR检测lasI、lasR和mexA基因的相对表达量。结果临床样本分离出84株铜绿假单胞菌,其中产生物被膜菌58株,占比69%;多重耐药菌共24株,占比28.6%;多重耐药菌株中产生物被膜有11株,占45.8%;多重耐药菌中mexA基因表达上调有18株,占75%;lasI基因表达上调有8株,占33.3%。结论多重耐药菌株的生物被膜形成率显著低于非多重耐药组,多重耐药铜绿假单胞菌的主动外排泵MexAB-OprM系统基因表达出现显著上调,生物被膜菌的lasI基因表达显著上调而lasR基因的表达无明显变化。  相似文献   

14.
嗜酸性硫杆菌(Acidithiobacillus spp.)是一类重要的极端环境微生物与工业微生物。该类细菌通过氧化硫或亚铁获得电子以固定二氧化碳进行自养生长,是驱动矿山环境酸化和重金属溶出的关键菌群,也是生物冶金等微生物浸出技术中的核心菌群。群体感应(quorum sensing, QS)系统是细菌种内及种间信息交流的重要方式,广泛分布于嗜酸性硫杆菌等化能自养微生物中,比如类似于LuxI/R的AfeI/R系统。系统介绍近年来嗜酸性硫杆菌菌体感应系统研究成果,尤其是在AfeI/R种群分布、生物学功能、调节机制及其应用研究中的新发现与新理论。讨论今后嗜酸性硫杆菌群体感应系统研究的主要方向及需要解决的关键科学问题,以促进极端微生物群体感应系统理论研究的开展与产业应用技术的开发。  相似文献   

15.
Bacterial community compositions from 10 pulp- and paper-mill treatment systems were compared using both traditional and molecular techniques. 16S-RFLP (Random Fragment Length Polymorphisms) analysis was used to examine the genotypic profiles of the whole bacterial community of each treatment system. Although all the communities shared approximately 60% of their DNA band pattern, as determined by computer-assisted cluster analysis, each community displayed a unique profile that was stable over time under normal operating parameters. Reverse Sample Genome Probing (RSGP) and 16S-RFLP were used to compare the culturable bacterial communities of several geographically separated pulp-mill biotreatment system communities. There was little overlap in the composition of the culturable community between mills at the genus level. Furthermore, RSGP variation was almost as high within a mill as between mills. Partial sequences of the 16S rRNA genes from culturable isolates identified Bacillus spp., Pseudomonas spp., and Xanthobacter as some of the dominant species. Finally, several 16S rRNA genes from two whole community 16S RNA gene libraries were partially sequenced and identified as similar to unknown alpha-, beta-, and gamma-Proteobacteria, Ralstonia, Alcaligenes, Nitrospira, Firmicutes, and clones representing the new Holophaga/Acidobacterium phylum. These findings suggest that although these pulp- and paper-mill biotreatment communities perform similar functions, they are populated by unique mixtures of species.  相似文献   

16.
N-酰基高丝氨酸内酯(N-acyl-L-homoserine lactones,AHLs)信号分子介导的群体感应(quorum sensing,QS)是一种普遍的革兰氏阴性细菌信息交流方式。AHL-QS系统包括Lux I型AHLs合成酶和LuxR型受体蛋白。然而,部分革兰氏阴性菌缺失1个或多个LuxI型AHLs合成酶,仅有未配对的LuxR型受体蛋白,该LuxR型受体蛋白称为LuxR solo或Orphan蛋白。LuxR solos蛋白在细菌窃听、种间和种内的信号交流中起重要作用,为群体感应研究领域的热点。本文主要综述细菌LuxR solos蛋白的发现、基本概念、蛋白结构及类型,阐述感应AHLs和非AHLs信号分子的重要LuxR solos蛋白及功能,并对群体感应LuxR solos蛋白的研究前景和意义进行了展望。  相似文献   

17.
18.
A LuxI/R-like quorum sensing (QS) system (AfeI/R) has been reported in the acidophilic and chemoautotrophic Acidithiobacillus spp. However, the function of AfeI/R remains unclear because of the difficulties in the genetic manipulation of these bacteria. Here, we constructed different afeI mutants of the sulfur- and iron-oxidizer A. ferrooxidans, identified the N-acyl homoserine lactones (acyl-HSLs) synthesized by AfeI, and determined the regulatory effects of AfeI/R on genes expression, extracellular polymeric substance synthesis, energy metabolism, cell growth and population density of A. ferrooxidans in different energy substrates. Acyl-HSLs-mediated distinct regulation strategies were employed to influence bacterial metabolism and cell growth of A. ferrooxidans cultivated in either sulfur or ferrous iron. Based on these findings, an energy-substrate-dependent regulation mode of AfeI/R in A. ferrooxidans was illuminated that AfeI/R could produce different types of acyl-HSLs and employ specific acyl-HSLs to regulate specific genes in response to different energy substrates. The discovery of the AfeI/R-mediated substrate-dependent regulatory mode expands our knowledge on the function of QS system in the chemoautotrophic sulfur- and ferrous iron-oxidizing bacteria, and provides new insights in understanding energy metabolism modulation, population control, bacteria-driven bioleaching process, and the coevolution between the acidophiles and their acidic habitats.  相似文献   

19.
Biogeochemical and microbiological characterization of marine sediments taken from the Yellow Sea of South Korea was carried out. One hundred and thirty six bacterial strains were isolated, characterized and phylogenetic relationship was evaluated. The gene sequences of 16S rDNA regions were examined to study the phylogenetic analysis of bacterial community in the marine sediments. Among 136 isolates, 5 bacterial isolates were identified as novel members, remaining 131 isolates were fall into 5 major linkages of bacterial phyla represented as follows: Firmicutes, alpha, gamma-Proteobacteria, High G + C and Bacteroidetes. Bacterial community in sediments mainly dominated by Firmicutes (58.77%) and followed by gamma-Pateobacteria (38.16%). Gamma-Proteobacteria domain highly diverged and mainly consists of the genera Vibrio, Marinobacterium, Photobacterium, Pseudoalteromonas, Oceanisphaera, Halomonas, Alteromonas, Stenotrophomonas and Pseudomonas. Total N and Organic matter content in Yellow Sea of South Korea were relatively high. The Total-N content in the sediments was varied from 177.31 to 1974.96 (mg/kg) and organic matter ranged from 0.82 to 4.23 (g/100 g). The current research work provides clear explanation obtained for the phylogenetic affiliation of the culturable bacterial community in sediments of South Korean Yellow Sea and revealed the relationship with biogeochemical characteristics of the sediments.  相似文献   

20.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号