首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this study a short sequence encoding the receptor-binding activity of the much larger 35-kDa enterotoxin elaborated by Clostridium perfringens was localized by recombinant DNA techniques. Defined fragments corresponding to portions of the enterotoxin gene were cloned into an Escherichia coli expression vector system, and these lysates were analyzed for their ability to compete for binding with native C. perfringens enterotoxin (CPE). The lysate containing CPE290-319 (CPE sequence encompassing residues 290-319) was shown to compete with 125I-CPE for specific binding sites on rabbit intestinal brush border membranes. To confirm this finding, a peptide corresponding to the CPE amino acid sequence 290-319 was synthesized and found to completely block CPE specific binding. To demonstrate directly that CPE290-319 can act as a competitive antagonist of CPE cytotoxicity for physiologic receptors, Vero cells were preincubated with either E. coli lysates containing CPE290-319 or the synthetic peptide corresponding to this sequence. Preincubation of Vero cells with either the lysate or the peptide completely protected these cells from CPE challenge. This information localizes the C-terminal 30 residues of CPE (CPE290-319) as a linear sequence sufficient for recognition and binding to the eukaryotic CPE receptor.  相似文献   

2.
Since most in vitro studies exploring the action of Clostridium perfringens enterotoxin (CPE) utilize either Vero or CaCo-2 cells, the current study directly compared the CPE responsiveness of those two cell lines. When CPE-treated in suspension, both CaCo-2 and Vero cells formed SDS-resistant, CPE-containing complexes of approximately 135, approximately 155, and approximately 200 kDa. However, confluent Transwell cultures of either cell line CPE-treated for 20 min formed only the approximately 155-kDa complex. Since those Transwell cultures also exhibited significant (86)Rb release, approximately 155-kDa complex formation is sufficient for CPE-induced cytotoxicity. Several differences in CPE responsiveness between the two cell lines were also detected. (i) CaCo-2 cells were more sensitive when CPE-treated on their basal surface, whereas Vero cells were more sensitive when CPE-treated on their apical surface; those sensitivity differences correlated with CPE binding the apical versus basolateral surfaces of these two cell lines. (ii) CPE-treated Vero cells released (86)Rb into both Transwell chambers, whereas CaCo-2 cells released (86)Rb only into the CPE-containing Transwell chamber. (iii) Vero cells express the tight junction (TJ) protein occludin but (unlike CaCo-2 cells) cannot form TJs. The ability of TJs to affect CPE responsiveness is supported by the similar effects of CPE on Transwell cultures of CaCo-2 cells and Madin-Darby canine kidney cells, another polarized cell forming TJs. Confluent CaCo-2 Transwell cultures CPE-treated for >1 h formed the approximately 200-kDa CPE complex (which also contains occludin), exhibited morphologic damage, and had occludin removed from their TJs. Collectively, these results identify CPE as a bifunctional toxin that, in confluent polarized cells, first exerts a cytotoxic effect mediated by the approximately 155-kDa complex. Resultant damage then provides CPE access to TJs, leading to approximately 200-kDa complex formation, internalization of some TJ proteins, and TJ damage that may increase paracellular permeability and thereby contribute to the diarrhea of CPE-induced gastrointestinal disease.  相似文献   

3.
Viable and non-viable African green monkey kidney (Vero) cells after treatment with Clostridium perfringens enterotoxin (CPE) followed by simultaneous double staining with fluorescein diacetate (FDA) and propidium iodide (PI) were counted with a flow cytometer (FCM). Within 1 min the FCM analysed 10 000 Vero cells in a sample for viability. After treatment of Vero cells with CPE for 60 min and staining with FDA-PI for 5 min, a reproducible dose-response curve was obtained between 25 and 400 ng/ml of CPE and percentage viable cell numbers. The FCM analysis proved to be a strong tool for rapid discrimination between viable and non-viable Vero cells treated with CPE in a large number of samples at a time.  相似文献   

4.
Abstract To identify the binding substance for Clostridium perfringens enterotoxin (CPE), the CPE-binding substances metabolically labelled with [3H]leucine on CPE-susceptible (Vero) and resistant (L-929) cells were analyzed by solubilization, immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography. The CPE-binding substance was found on Vero cells, but not on L-929 cells. The molecular weight of the CPE-binding substance was found to be 60 000 on SDS-PAGE. The CPE-binding substances were isolated from Vero cells and Balb/c mouse intestinal brush border membranes by affinity chromatography on CPE-coupled Sepharose 4B. They were homogeneous substances with molecular weights of 60 000 on SDS-PAGE and inhibited to the same extent the binding reaction of 125I-labeled CPE with Vero cells. These results suggests that the CPE-binding substances are the receptors of CPE on these cells.  相似文献   

5.
Type 1 fimbriae have been shown to be specifically required for Escherichia coli colonisation and pathogenesis of the urinary tract. These structural organelles mediate specific adhesion to alpha-D-mannosides by virtue of the FimH adhesin. FimH is a two-domain protein in which the N-terminal domain contains the receptor-binding site and the C-terminal domain is required for organelle integration. To date, FimH has only been isolated as a complex with the system-specific chaperone FimC. Here we report that a functional form of the FimH receptor-binding domain can be readily isolated and characterised by replacing the C-terminal domain with a histidine tag.  相似文献   

6.
Previous epidemiological studies have implicated Clostridium perfringens enterotoxin (CPE) as a virulence factor in the pathogenesis of several gastrointestinal (GI) illnesses caused by C. perfringens type A isolates, including C. perfringens type A food poisoning and non-food-borne GI illnesses, such as antibiotic-associated diarrhoea and sporadic diarrhoea. To further evaluate the importance of CPE in the pathogenesis of these GI diseases, allelic exchange was used to construct cpe knock-out mutants in both SM101 (a derivative of a C. perfringens type A food poisoning isolate carrying a chromosomal cpe gene) and F4969 (a C. perfringens type A non-food-borne GI disease isolate carrying a plasmid-borne cpe gene). Western blot analyses confirmed that neither cpe knock-out mutant could express CPE during either sporulation or vegetative growth, and that this lack of CPE expression could be complemented by transforming these mutants with a recombinant plasmid carrying the wild-type cpe gene. When the virulence of the wild-type, mutant and complementing strains were compared in a rabbit ileal loop model, sporulating (but not vegetative) culture lysates of the wild-type isolates induced significant ileal loop fluid accumulation and intestinal histopathological damage, but neither sporulating nor vegetative culture lysates of the cpe knock-out mutants induced these intestinal effects. However, full sporulation-associated virulence could be restored by complementing these cpe knock-out mutants with a recombinant plasmid carrying the wild-type cpe gene, which confirms that the observed loss of virulence for the cpe knock-out mutants results from the specific inactivation of the cpe gene and the resultant loss of CPE expression. Therefore, in vivo analysis of our isogenic cpe mutants indicates that CPE expression is necessary for these two cpe-positive C. perfringens type A human disease isolates to cause GI effects in the culture lysate:ileal loop model system, a finding that supports CPE as an important virulence factor in GI diseases involving cpe-positive C. perfringens type A isolates.  相似文献   

7.
The 421-residue protein TolA is required for the translocation of group A colicins (colicins E1, E2, E3, A, K, and N) across the cell envelope of Escherichia coli. Mutations in TolA can render cells tolerant to these colicins and cause hypersensitivity to detergents and certain antibiotics, as well as a tendency to leak periplasmic proteins. TolA contains a long alpha-helical domain which connects a membrane anchor to the C-terminal domain, which is required for colicin sensitivity. The functional role of the alpha-helical domain was tested by deletion of residues 56 to 169 (TolA delta1), 166 to 287 (TolA delta2), or 54 to 287 (TolA delta3) of the alpha-helical domain of TolA, which removed the N-terminal half, the C-terminal half, or nearly the entire alpha-helical domain of TolA, respectively. TolA and TolA deletion mutants were expressed from a plasmid in an E. coli strain producing no chromosomally encoded TolA. Cellular sensitivity to the detergent deoxycholate was increased for each deletion mutant, implying that more than half of the TolA alpha-helical domain is necessary for cell envelope stability. Removal of either the N- or C-terminal half of the alpha-helical domain resulted in a slight (ca. 5-fold) decrease in cytotoxicity of the TolA-dependent colicins A, E1, E3, and N compared to cells producing wild-type TolA when these mutants were expressed alone or with TolQ, -R, and -B. In cells containing TolA delta3, the cytotoxicity of colicins A and E3 was decreased by a factor of >3,000, and K+ efflux induced by colicins A and N was not detectable. In contrast, for colicin E1 action on TolA delta3 cells, there was little decrease in the cytotoxic activity (<5-fold) or the rate of K+ efflux, which was similar to that from wild-type cells. It was concluded that the mechanism(s) by which cellular uptake of colicin E1 is mediated by the TolA protein differs from that for colicins A, E3, and N. Possible explanations for the distinct interaction and unique translocation mechanism of colicin E1 are discussed.  相似文献   

8.
BACKGROUND: E colicin proteins have three functional domains, each of which is implicated in one of the stages of killing Escherichia coli cells: receptor binding, translocation and cytotoxicity. The central (R) domain is responsible for receptor-binding activity whereas the N-terminal (T) domain mediates translocation, the process by which the C-terminal cytotoxic domain is transported from the receptor to the site of its cytotoxicity. The translocation of enzymatic E colicins like colicin E9 is dependent upon TolB but the details of the process are not known. RESULTS: We have demonstrated a protein-protein interaction between the T domain of colicin E9 and TolB, an essential component of the tol-dependent translocation system in E. coli, using the yeast two-hybrid system. The crystal structure of TolB, a procaryotic tryptophan-aspartate (WD) repeat protein, reveals an N-terminal alpha + beta domain based on a five-stranded mixed beta sheet and a C-terminal six-bladed beta-propeller domain. CONCLUSIONS: The results suggest that the TolB-box residues of the T domain of colicin E9 interact with the beta-propeller domain of TolB. The protein-protein interactions of other beta-propeller-containing proteins, the yeast yPrp4 protein and G proteins, are mediated by the loops or outer sheets of the propeller blades. The determination of the three-dimensional structure of the T domain-TolB complex and the isolation of mutations in TolB that abolish the interaction with the T domain will reveal fine details of the protein-protein interaction of TolB and the T domain of E colicins.  相似文献   

9.
Nuclear receptor-binding SET-domain-containing protein 1 (NSD1), a culprit gene for Sotos syndrome, contains a su(var)3-9, enhancer-of-zeste, trithorax (SET) domain that is responsible for histone methyltransferase activity and other domains such as plant homeodomain (PHD) and proline-tryptophan-tryptophan-proline (PWWP) involved in protein-protein interactions in the C-terminal half of NSD1. To elucidate the function of NSD1 on cell growth, we overexpressed NSD1 in NIH3T3 cells. Cells overexpressing NSD1 grew in the presence of 2% serum, whereas vector transfected cells did not. Overexpression of the C-terminal half of NSD1 but not the N-terminal half of NSD1 also produced cell growth under low serum concentration. Furthermore, overexpression in NIH3T3 of Schizosaccharomyces pombe SET2 which has a SET domain but not PHD or PWWP domains conferred the reduced serum dependence. Thus, the SET domain of NSD1 is involved in cell growth by modulating serum dependence.  相似文献   

10.
Clostridium perfringens enterotoxin (CPE) is believed to be involved in several important gastrointestinal illnesses. Recent studies have identified a number of distinct molecular events which occur after CPE treatment of eukaryotic cells or isolated membranes. Additional studies are underway to determine the temporal order and intrinsic importance of each CPE event for cytotoxicity. We now demonstrate that a truncated CPE fragment binds to membranes, but is unable to insert into membranes or cause any other subsequent post-insertion event. This is the first experimental evidence supporting the importance of membrane insertion for CPE cytotoxicity. Binding of the CPE fragment is also shown to be irreversible, strongly suggesting that the irreversible binding of wild-type CPE is not due solely to insertion of CPE into membranes.  相似文献   

11.
Abstract The flow cytometric assay method was tested for the cytotoxic activity of Clostridium perfringens enterotoxin (CPE) in culture using mouse mammary carcinoma cell line FM3A stained with propidium iodide (PI). From the results obtained, FM3A cells proved to be susceptible to CPE. A reproducible dose-response curve with FM3A was obtained between crude CPE at 13.9–109 ng/ml and between purified CPE at 40–400 ng/ml, respectively. These findings indicate that non-adherent FM3A is preferable to determine the cytotoxic activity of CPE because it can be used without detachment procedures with trypsinin compared with adherent African monkey kidney cell line (Vero cells). Furthermore, the flow cytometry with non-adherent cell FM3A stained with PI only proved to be a useful method to determine the biological activity of CPE in culture isolates.  相似文献   

12.
The mosquitocidal toxin (MTX) produced by Bacillus sphaericus strain SSII-1 is an approximately 97-kDa single-chain toxin which contains a 27-kDa enzyme domain harboring ADP-ribosyltransferase activity and a 70-kDa putative binding domain. Due to cytotoxicity toward bacterial cells, the 27-kDa enzyme fragment cannot be produced in Escherichia coli expression systems. However, a nontoxic 32-kDa N-terminal truncation of MTX can be expressed in E. coli and subsequently cleaved to an active 27-kDa enzyme fragment. In vitro the 27-kDa enzyme fragment of MTX ADP-ribosylated numerous proteins in E. coli lysates, with dominant labeling of an approximately 45-kDa protein. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry combined with peptide mapping identified this protein as the E. coli elongation factor Tu (EF-Tu). ADP ribosylation of purified EF-Tu prevented the formation of the stable ternary EF-Tuaminoacyl-tRNAGTP complex, whereas the binding of GTP to EF-Tu was not altered. The inactivation of EF-Tu by MTX-mediated ADP-ribosylation and the resulting inhibition of bacterial protein synthesis are likely to play important roles in the cytotoxicity of the 27-kDa enzyme fragment of MTX toward E. coli.  相似文献   

13.
The mechanism by which Clostridium perfringens enterotoxin (CPE) simultaneously inhibits RNA, DNA, and protein synthesis is unknown. In the current study the possible involvement of small molecule permeability alterations in CPE-induced inhibition of macromolecular synthesis was examined. Vero cells CPE-treated in minimal essential medium (MEM) completely ceased net precursor incorporation into RNA and protein within 15 minutes of CPE treatment. However, RNA and protein synthesis continued for at least 30 minutes in Vero cells CPE-treated in buffer (ICIB) approximating intracellular concentrations of most ions. Addition of intracellular concentrations of amino acids to ICIB (ICIB-AA) caused a further small but detectable increase in protein synthesis in CPE-treated cells. ICIB did not affect CPE-specific binding levels or rates. Similar small molecule permeability changes (i.e., 86Rb-release) were observed in cells CPE-treated in either ICIB or in Hanks' balanced salt solution. Collectively these findings suggest that CPE-treatment of cells in ICIB-AA ameliorates CPE-induced changes in intracellular concentrations of ions and amino acids and permits the continuation of RNA and protein synthesis. These results are consistent with and support the hypothesis that permeability alterations for small molecules are involved in the CPE-induced inhibition of precursor incorporation into macromolecules in Vero cells.  相似文献   

14.
When purified p60v-src was mixed with lysates of chicken embryo fibroblasts and immunoprecipitated with anti-Src antibody, phosphatidylinositol (PI)-3 kinase activity was found to be present in the Src protein immunoprecipitates. The level of bound PI-3 kinase activity was 5 to 10 times higher in lysates obtained from cells transformed by the src, fps, or yes oncogene than in lysates of uninfected cells. This increase in associated PI-3 kinase activity appears to be due to increased binding of this enzyme to p60v-src. This change most likely resulted from tyrosine phosphorylation of PI-3 kinase or an associated protein, since the PI-3 kinase activity that can bind to p60v-src was depleted by antiphosphotyrosine antibody. Binding of PI-3 kinase did not require either p60src protein kinase activity or autophosphorylation of p60v-src tyrosine residues. Furthermore, binding was markedly decreased by deletions in the N-terminal SH2 region but unchanged by deletion of the C-terminal half of p60v-src containing the catalytic domain. Taking these data together, it appears that PI-3 kinase or its associated protein is phosphorylated on tyrosine and that the phosphorylated form can bind to the N-terminal half of p60v-src, which contains the SH2 domain.  相似文献   

15.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

16.
Vero cell assay for rapid detection of Clostridium perfringens enterotoxin   总被引:1,自引:0,他引:1  
A rapid assay which measured the biological activity of Clostridium perfringens enterotoxin was developed. The method involved the rapid killing of Vero cells by enterotoxin produced by C. perfringens grown in Duncan and Strong sporulation medium. Serial dilutions of toxin were added to Vero cells either in suspension or grown as monolayers in wells of a 96-well cell tissue culture cluster plate. Vital staining of Vero cells with neutral red, followed by extraction of the dye, allowed toxin levels to be determined either visually or by optical density measurements with a micro-ELISA M580 computer program. The toxin produced was confirmed as different from the Vero toxin of Escherichia coli and the alpha and theta toxins of C. perfringens.  相似文献   

17.
不同来源的肾综合征出血热病毒对Vero细胞的致病变作用   总被引:3,自引:0,他引:3  
前文报道,肾综合征出血热病毒76-118株能使Vero细胞产生病变。本文报道76-118株和另11株不同来源的肾综合征出血热病毒(H537、A9、H5、R178、HB55、R22、Z10,沟3、L99、A16和J10)对Vero细胞的致病变作用(CPE )。其中除沟3株外,大部分毒株在感染Vero细胞后的第一代即可见明显的CPE。CPE的特点与76-118株相似,主要是感染细胞粘聚、融合,形成网状结构。CPE能被特异性抗HFRS病毒血清和型特异性单克隆抗体所中和抑制,但不能被特异性抗呼肠孤病毒Ⅲ型免疫血清所中和抑制。HFRS病毒对Vero细胞的致病变作用,对进一步研究HFRS病毒的某些生物学特性及实验方法等均有重要意义。  相似文献   

18.
A rapid assay which measured the biological activity of Clostridium perfringens enterotoxin was developed. The method involved the rapid killing of Vero cells by enterotoxin produced by C. perfringens grown in Duncan and Strong sporulation medium. Serial dilutions of toxin were added to Vero cells either in suspension or grown as monolayers in wells of a 96-well cell tissue culture cluster plate. Vital staining of Vero cells with neutral red, followed by extraction of the dye, allowed toxin levels to be determined either visually or by optical density measurements with a micro-ELISA M580 computer program. The toxin produced was confirmed as different from the Vero toxin of Escherichia coli and the alpha and theta toxins of C. perfringens.  相似文献   

19.
There has been no culture method of choice for detecting non-O157 Shiga toxin-producing Escherichia coli strains (STEC) because of their biochemical diversity The aim of this study was the assessment of verotoxin gene detection (VT1/VT2) within STEC PCR compared with the Vero cells cytotoxicity among O157 and non-O157 STEC serotypes. Stool cultures were performed on Tryptic Soy Broth and sorbitol MacConkey agar with cefixitime and tellurite supplements which were identified as Escherichia coli (E. coli) by BBL crystal. Further identifications were performed including verotoxin production assessment by Vero cells cytotoxicity assay, PCR for specific VT1/VT2 genotyping, and isolates were plated on blood agar and tested for enterohemolysis. Vero cells cytotoxicity assay revealed that 58 of E. coli isolates (71.6%) were STEC. In PCR, 33 (56.9%) of the 58 strains were positive for the VT2 gene, 24 (41.4%) were positive for the VT1 gene and one isolate was positive for both genes. In comparison to Vero cells cytotoxicity, the sensitivity, specificity of PCR were 100%. In comparative study between verotoxin assessment by Vero cells cytotoxicity and enterohemolytic activity, concordance positive results between both were 53 (91.4%). The most common serogroups of STEC were O157 (33%) and O26 (20%). From this study we can conclude that enterohemolysin production can be used as surrogate marker for STEC. The most rapid and promising approach for detection of STEC is by molecular method.  相似文献   

20.
The Vero cell assay presently used for virulence testing of verotoxigenic Escherichia coli (VTEC) requires at least 48-96 h where cytotoxicity effects are examined under a microscope. Here, a complimentary rapid assay was developed that measures endogenous lactate dehydrogenase (LDH) release from Vero or HEp-2 cells as an indicator of cytotoxicity. Toxin preparations from 24 VTEC strains induced 36-89% LDH from Vero cells and 15-62% LDH from HEp-2 cells in 12-16 h. A verotoxin-positive but enterohemolysin negative strain also showed a similar cytotoxicity effect. In contrast, three VT-negative strains caused only 13-16% LDH from Vero cells and 1-7% LDH from HEp-2 cells. Five presumptive E. coli isolates from naturally contaminated food and clinical sources did not induce significant LDH release from either cell lines. PCR analysis confirmed the presence of vt1 or vt2 genes in E. coli showing positive LDH values. Similarly, RiboPrinter analysis confirmed and identified the test strains as E. coli except for two meat isolates, which were identified as Hafnia alvei. Cytopathic effects of toxin preparations from VTEC revealed severe lysis, vacuole formation and death in Vero cells and multiple vacuoles and cell elongation in HEp-2 cells. The colorimetric cytotoxicity assay described here can provide quantitative data for determining the virulence potential of verotoxigenic E. coli in 12-16 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号