首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
《Carbohydrate research》1999,315(1-2):3-15
Trehazolin (1) is a unique natural pseudodisaccharide possessing strong trehalase-specific inhibitory activity. To determine its argued correct stereochemistry, the syntheses of trehazolin (1), its components, the aglycon moiety, trehalamine (4) and its aminocyclitol hexaacetate (6), were accomplished from d-glucose using intramolecular [3+2] cycloaddition as the key step. In order to investigate the structure–activity relationships with regard to the stereochemistry of the aminocyclitol moiety and that of the anomeric position of trehazolin (1), trehalostatin (2) (trehazolin C-5 epimer), trehazolin β-anomer (32) and, trehazolin C-6 epimer (33) were all synthesized. In particular, with respect to the synthesis of trehazolin C-6 epimer (33), a tandem aldol–Wittig type reaction was developed as the key step to synthesize the highly functionalized 5-membered cyclitol. Moreover, on the basis of the outcome of these synthetic studies, a number of trehazolin-related compounds (49–52), modified at the terminal amino group of trehalamine (4), were synthesized to be evaluated as candidates directed to anti-NIDDM (non-insulin-dependent diabetes mellitus) drugs.  相似文献   

4.
Visual perception in humans occurs through absorption of electromagnetic radiation from 400 to 780 nm by photoreceptors in the retina. A photon of visible light carries a sufficient amount of energy to cause, when absorbed, a cis,trans-geometric isomerization of the 11-cis-retinal chromophore, a vitamin A derivative bound to rhodopsin and cone opsins of retinal photoreceptors. The unique biochemistry of these complexes allows us to reliably and reproducibly collect continuous visual information about our environment. Moreover, other nonconventional retinal opsins such as the circadian rhythm regulator melanopsin also initiate light-activated signaling based on similar photochemistry.  相似文献   

5.
6.
7.
8.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

9.
10.
11.
12.
Chemistry and biology of eukaryotic iron metabolism   总被引:13,自引:0,他引:13  
With rare exceptions, virtually all studied organisms from Archaea to man are dependent on iron for survival. Despite the ubiquitous distribution and abundance of iron in the biosphere, iron-dependent life must contend with the paradoxical hazards of iron deficiency and iron overload, each with its serious or fatal consequences. Homeostatic mechanisms regulating the absorption, transport, storage and mobilization of cellular iron are therefore of critical importance in iron metabolism, and a rich biology and chemistry underlie all of these mechanisms. A coherent understanding of that biology and chemistry is now rapidly emerging. In this review we will emphasize discoveries of the past decade, which have brought a revolution to the understanding of the molecular events in iron metabolism. Of central importance has been the discovery of new proteins carrying out functions previously suspected but not understood or, more interestingly, unsuspected and surprising. Parallel discoveries have delineated regulatory mechanisms controlling the expression of proteins long known--the transferrin receptor and ferritin--as well as proteins new to the scene of iron metabolism and its homeostatic control. These proteins include the iron regulatory proteins (IRPs 1 and 2), a variety of ferrireductases in yeast an mammalian cells, membrane transporters (DMT1 and ferroportin 1), a multicopper ferroxidase involved in iron export from cells (hephaestin), and regulators of mitochondrial iron balance (frataxin and MFT). Experimental models, making use of organisms from yeast through the zebrafish to rodents have asserted their power in elucidating normal iron metabolism, as well as its genetic disorders and their underlying molecular defects. Iron absorption, previously poorly understood, is now a fruitful subject for research and well on its way to detailed elucidation. The long-sought hemochromatosis gene has been found, and active research is underway to determine how its aberrant functioning results in disease that is easily controlled but lethal when untreated. A surprising connection between iron metabolism and Friedreich's ataxia has been uncovered. It is no exaggeration to say that the new understanding of iron metabolism in health and disease has been explosive, and that what is past is likely to be prologue to what is ahead.  相似文献   

13.
Chemistry and clinical biology of the bryostatins   总被引:7,自引:0,他引:7  
Bryostatins are a class of antineoplastic compounds isolated from the bryozoans Bugula neritina. A wide range of scientific research is currently underway, studying different aspects of the bryostatins. In this review we try to summarize the latest findings, including all the topics involved, from marine biology to medicinal chemistry.  相似文献   

14.
15.
16.
Polysaccharides containing galactofuranosyl and arabinofuranosyl residues are key components of many microorganisms. Recent investigations have provided a greater understanding of the biosynthetic pathways by which these glycans are assembled. Concomitant with these biochemical studies, an increasing number of chemical syntheses of oligofuranosides have been reported and new methods for their assembly have been developed.  相似文献   

17.
18.
Protein S-glutathionylation is emerging as a central oxidation that regulates redox signaling and biological processes linked to diseases. In recent years, the field of protein S-glutathionylation has expanded by developing biochemical tools for the identification and functional analyses of S-glutathionylation, investigating knockout mouse models, and developing and evaluating chemical inhibitors for enzymes involved in glutathionylation. This review will highlight recent studies of two enzymes, glutathione transferase omega 1 (GSTO1) and glutaredoxin 1 (Grx1), especially introducing their glutathionylation substrates associated with inflammation, cancer, and neurodegeneration and showcasing the advancement of their chemical inhibitors. Lastly, we will feature protein substrates and chemical inducers of LanC-like protein (LanCL), the first enzyme in protein C-glutathionylation.  相似文献   

19.
20.
Chemistry and biology of the polyene macrolide antibiotics   总被引:21,自引:0,他引:21  
[This corrects the article on p. 166 in vol. 37, PMID: 4578757.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号