首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cadmium on performance, antioxidant defense system, liver and kidney functions, and cadmium accumulation in selected tissues of broiler chickens were studied. Whether the possible adverse effects of cadmium would reverse with the antioxidant ascorbic acid was also investigated. Hence, 4 treatment groups (3 replicates of 10 chicks each) were designed in the study: control, ascorbic acid, cadmium, and cadmium plus ascorbic acid. Cadmium was given via the drinking water at a concentration of 25 mg/L for 6 wk. Ascorbic acid was added to the basal diet at 200 mg/kg either alone or with cadmium. Cadmium decreased the body weight (BW), body weight gain (BWG), and feed efficiency (FE) significantly at the end of the experiment, wheras its effect on feed consumption (FC) was not significant. Cadmium increased the plasma malondialdehyde (MDA) level as an indicator of lipid peroxidation and lowered the activity of blood superoxide dismutase (SOD). Liver function enzymes, aspartate amino transferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and gamma glutamyl transferase (GGT) activities were not changed by cadmium. Cadmium ingestion did not alter serum creatinine levels. Although the serum cadmium level was not elevated, cadmium mainly accumulated in the kidneys, liver, pancreas, and muscle. Ascorbic acid supplementation resulted in a reduction of MDA level previously increased by cadmium and a restoration in SOD activity. However, ascorbic acid did not ameliorate the growth inhibitory effect of cadmium nor did it prevent accumulation of cadmium in analyzed tissues. These data indicate that oxidative stress, induced by cadmium, plays a role in decreasing the performance of broilers and that dietary supplementation by ascorbic acid might be useful in reversing the lipid peroxidation induced by cadmium and partly alleviating the adverse effect of cadmium on performance of broilers.  相似文献   

2.
Protection against cadmium toxicity and enzyme inhibition by dithiothreitol   总被引:1,自引:0,他引:1  
In the present in vivo studies the alterations in cation transporting enzymes of the brain, kidney and liver tissues were assessed at intervals between 0 to 48 h after a single, acute (10 mg kg-1, i.p.) dose of cadmium (Cd). The inhibition of Na+-K+-ATPase during the first 24 h does not parallel the changes in K+-PNPPase suggesting differential effects on phosphorylation and dephosphorylation steps of the overall ATPase reaction. Between 30 min to 2 h the inhibition in enzyme activity was steep (27 per cent in brain, 54 per cent in liver) followed by a rapid reversal between 2-6 h. This critical period may correspond to the time of induction of metallothionein. This enzyme reversal was followed by a significant decrease in Na+-K+ ATPase (40-68 per cent) and K+-PNPPase (44-60 per cent) between 24 to 48 h. A similar pattern was observed in Ca2+-ATPase in all the three tissues. A 33 per cent mortality was observed in rats after 48 h of cadmium challenge. Administration of dithiothreitol (DTT, 20 mg kg-1, i.p.) to CdCl2 pretreated rats at 24 h resulted in mortality reduced from 33 per cent to 0 and reversal in the inhibition of Na+-K+-ATPase in brain and kidney and Ca2+-ATPase in brain. Since protection of brain and kidney enzymes by DTT paralleled its protection against Cd toxicity, their inhibition by Cd may, in part, constitute the biochemical basis of Cd toxicity.  相似文献   

3.
This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague-Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure.  相似文献   

4.
Cadmium is a well-known human carcinogen. Lipid peroxidation is involved in cadmium-related toxicity and carcinogenesis. Melatonin is an effective antioxidant and free radical scavenger. The potential protective effects of melatonin against cadmium-induced lipid peroxidation in hamster brain, heart, kidney, testes, lung, and liver were examined. Lipid peroxidation was induced by intraperitoneal injection of cadmium chloride [single dose of 1 mg/kg body weight (bw)]. To test whether melatonin would protect against the toxicity of the carcinogen, the melatonin was injected peritoneally at a dose of either 15 mg/kg bw or 5 mg/kg bw, 0.5 h before cadmium treatment and thereafter at 8 h intervals during the day in the 48 h interval following the cadmium injection. One group of hamsters received only a single melatonin injection (a dose of 15 mg/kg bw, 30 min prior to cadmium). Forty-eight hours after cadmium injection, lipid peroxidation increased in brain, heart, kidney, testes, and lung. Either multiple injections of melatonin at both the 5 and 15 mg/kg bw doses, or a single injection of 15 mg/kg bw, prevented the cadmium-related increases in lipid peroxidation in brain, heart and lung. Cadmium-induced lipid peroxidation in kidney was prevented by melatonin when it was given as a single dose of 15 mg/kg bw. Melatonin slightly, but not significantly, reduced cadmium-induced lipid peroxidation in testes. It is concluded that cadmium toxicity, at least with regard to the resulting lipid peroxidation, is reduced by administering melatonin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Binding of cholesterol into dog brain synaptosomal plasma membranes (SPM) within the limits of concentration used (0.5-5 microM) follows an exponential curve described by the general formula y = a.ebx. This curve, which represents the total binding (specific and nonspecific), acquires sigmoid character in the presence of 100 microM cholesterol glucoside, with a Hill coefficient of h = 2.98 +/- 0.18. The specific activity of the Na+/K+-transporting ATPase and Ca2+-transporting ATPase rose after a 2-h preincubation of SPM with cholesterol (up to 5 microM) or its glucoside (up to 50 microM) to at least 50% above their original values. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) increased with cholesterol glucoside (50 microM) incorporation. Cholesterol (5 microM) had no effect on the DPH fluorescence polarization. Arrhenius plots of Na+/K+-transporting ATPase activity exhibited a break point at 23.2 +/- 1.1 degrees C in control SPM, which was elevated to 29.5 +/- 1.4 degrees C in SPM treated with cholesterol glucoside (50 microM) and abolished in SPM treated with cholesterol (5 microM). The allosteric properties of SPM-bound Na+/K+-transporting ATPase inhibited by F- and Ca2+-transporting ATPase inhibited by Na+ (as reflected by changes in the Hill coefficient) were modulated by cholesterol. It could be stated that cholesterol glucoside (50 microM) produced an increased packing of the bulk lipids, while cholesterol (5 microM) increased the fluidity of the lipid microenvironment of both Na+/K+-transporting ATPase and Ca2+-transporting ATPase.  相似文献   

6.
Cadmium induced lipid peroxidation in rat testes and protection by selenium   总被引:5,自引:1,他引:4  
The main goal of this study was to investigate the role of cadmium in the promotion of lipid peroxidation in the homogenates of rat testes and the effect of selenium on lipid peroxidation in testes of rats after cadmium injection. Treatment of rats with cadmium resulted in a time- and dose-related accumulation of the metal ions in testes. The concentrations of cadmium, copper, zinc, selenium and iron in the tissues were determined by an atomic absorption spectrophotometer and lipid peroxidation in testes was measured by a spectrophotometer. Cadmium produced enhanced lipid peroxidation in testes. These cadmium-induced changes were accompanied by a significant increase of iron and copper, and a decrease of zinc in testes. Concurrent treatment with selenium and cadmium reduced the cadmium-induced alterations in lipid peroxidation and essential metal levels. Data suggest that lipid peroxidation was associated with cadmium toxicity in testes and that the addition of selenium was found to be effective in attenuation of this effect.  相似文献   

7.
Cadmium is a non-essential toxic metal used in industrial process, causes severe risk to human health. Selenium (Se) is an essential trace mineral of fundamental importance for human health. Selenium has antioxidant enzymes roles and is needed for the proper function of the immune system. In this study, the protective effects of selenium against cadmium intoxication in rats have been investigated by monitoring some selective cytokines (IL-1β, TNF α, IL-6, IL-10 and IFN-γ), antioxidant enzymes reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and lipid peroxidation malondialdehyde (MDA) as well as some selective biochemical markers of liver and kidney functions. Thirty-two rats were divided into four equal groups; the first group was used as a control. Groups 2–4 were treated with selenium (Se; 0.1 mg/kg BW), cadmium (Cd; 40 mg/L drinking water) and selenium plus cadmium, respectively. Rats were orally administered their relevant doses daily for 30 days. Blood samples were collected from heart puncture at the end of the experiment (30 days) for complete blood picture (CBC) and serum was separated to evaluate the different immunological parameters and biochemical parameters, as well as liver specimens for Cd and Se estimation. Rats in the Cd treated group have a significantly higher hepatic concentration of Cd than in other treated groups. Results revealed that cadmium significantly increased IL-1β, TNF α, IL-6 and IL-10, beside peripheral neutrophils count, while the IFN-γ and lymphocytes were decreased in rat sera. In addition, GSH level, CAT, SOD and GPx activities were significantly decreased while lipid peroxidation (MDA) was increased. Regarding, liver and renal markers, they were significantly increased in the activities of aminotransferases (AST, ALT), urea and creatinine, while total plasma proteins and albumin were significantly decreased. On the other hand, selenium treated group, showed significantly increased IFN-γ, GSH level, CAT, and GPx activities, as well as lymphocyte count while IL-10 was decreased. Selenium in combination with cadmium, significantly improved the elevation of serum IL-1β, IL-6, TNF α, IL-10 and malondialdehyde in addition to enhancing the antioxidant enzyme activities of GSH, CAT, GPx and SOD. Moreover, selenium has ameliorated the cadmium-induced liver and kidney damage by improving hepatic and renal markers. The results of this investigation demonstrated that selenium has the potential to countermeasure the immunosuppressive as well as hepatic and renal oxidative damage induced by cadmium in rats; selenium has shown promising effects against Cd toxicity.  相似文献   

8.
Effects of anilofos on lipid peroxidation--an index of oxidative stress, ATPase activity--an integral part of active transport mechanisms for cations, GSH level and GST activity were evaluated in blood (erythrocyte/plasma), brain and liver of male rats after daily oral exposure to 50, 100 or 200 mg/kg for 28 days. None of the doses increased lipid peroxidation. The lowest dose, rather, produced marginally significant decrease in peroxidation in liver. Different doses of anilofos decreased GSH content and activities of GST and ATPases. Inhibition of total ATPase (34-44%) and Na+-K+-ATPase (45-52%) activities was maximum in liver, while that of Mg2+-ATPase (46-56%) was more in erythrocyte. Results indicate that anilofos may not cause oxidative damage to cell membrane in repeatedly exposed animals and may cause neuronal/cellular dysfunction by affecting ionic transport across cell membrane.  相似文献   

9.
Sodium/potassium adenosine triphosphatase (Na+/K+ ATPase) and Na+/K+ ATPase mRNA content of rabbit embryos during preimplantation development were evaluated. Changes in Na+/K+ ATPase alpha-subunit content were detected with Western blotting using polyclonal antiserum against guinea pig Na+/K+ ATPase. Total RNA samples from rabbit embryos were analyzed by using Northern blots hybridized with random primer-labeled cDNA for Na+/K+ ATPase alpha-subunit from sheep kidney. Northern blots exhibited a single mRNA band (3.65 kilobases) in sheep kidneys and rabbit embryos. Between Day 4 and Day 6 of development, Na+/K+ ATPase alpha-subunit mRNA content increased 35-fold whereas Na+/K+ ATPase alpha-subunit content increased 22-fold. The similar increase in Na+/K+ ATPase alpha-subunit mRNA and alpha-subunit content in rabbit embryos suggests that Na+/K+ ATPase is partly regulated at the mRNA level during blastocyst expansion.  相似文献   

10.
The effect of exercise on oxidant stress and on alterations in antioxidant defense in elderly has been investigated extensively. However, the impact of regularly performed long-term physical activity starting from adulthood and prolonged up to the old age is not yet clear. We have investigated the changes in the activities of antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) - and lipid peroxidation in various tissues of rats which had performed (old-trained) or had not performed (old-control) regular swimming exercise for one year. These animals were compared with young-sedentary rats. Increased lipid peroxidation was observed with ageing in all tissues (heart, liver, kidney, striated muscle) and swimming had no additional effect on this elevation of lipid peroxidation. Heart and striated muscle SOD activites, and striated muscle CAT activity increased as a consequence of ageing, whereas kidney and liver CAT activities, as well as GPx activities in kidney, liver, lung and heart were significantly decreased compared to young controls. Lung and heart SOD, liver CAT activities as well as GPx activities in liver, lung and heart were increased significantly in rats which performed exercise during ageing, compared to the old-control group. These findings suggest that lifelong exercise can improve the antioxidant defense in many tissues without constituting any additional oxidant stress.  相似文献   

11.
The effects on red blood cells of superoxide dismutase (Cu,ZnSOD) depletion, induced by feeding Wistar rats with a copper deficient diet, were investigated. SOD depleted red blood cells were more sensitive to peroxidation and to hemolysis than normal cells when exposed to tert-butylhydroperoxide (t-BOOH). Membranes isolated from SOD depleted cells showed a lower content of vitamin E and higher (Na+, K+) and Mg2+ ATPase activities. These results support the view that superoxide dismutase plays an important role in cellular oxidative metabolism.  相似文献   

12.
Abstact Cadmium is one of the most toxic pollutants in environment. Cadmium accumulation in blood affects the renal cortex and causes renal failure. In this study, we aimed to evaluate the effects of cadmium on rat liver tissue. Eighteen male albino rats aged ten weeks old were used in the study. 15 ppm of cadmium was administered to rats via consumption water daily. At the end of the 30th study day, the animals were killed under ether anesthesia. After the liver tissue samples were taken, histopathological and biochemical examinations were performed. Histopathologic changes have included vacuolar and granular degenerations in hepatocytes, heterochromatic nucleuses and sinusoidal and portal widenings. Central vein diameters were normal in cadmium exposed group. Whereas, there was statistically significant difference between two groups by means of sinusoidal (p< 0.001) and portal triad diameters (p< 0.01). Malondialdehyde (MDA) is an indicator of lipid peroxidation. In this study, MDA was used as a marker of oxidative stress-induced liver impairment in cadmium exposed rats. Superoxide dismutase (SOD) and catalase (CAT) activities were also measured to evaluate the changes in antioxidative system in liver tissues. Current findings showed that MDA levels were increased and SOD and CAT activities were decreased in cadmium exposed group compared to control group. The difference between two groups was statistically significant (pvalues: MDA,p< 0.01; CAT,p< 0.01 and SOD,p< 0.05). In conclusion, these findings suggest the role of oxidative mechanisms in cadmium-induced liver tissue damage  相似文献   

13.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

14.
Human consumption of over 400 species of tropical fish containing polyether toxins (e.g. ciguatoxins, maitotoxins) causes ciguatera fish poisoning. The Caribbean barracuda (Sphyraena barracuda) is one of the most potent ciguatoxic fish. The objective of this study was to determine whether toxicity of 14 barracuda livers was correlated with lipid peroxidation. A significant correlation (p = 0.015, Pearson’s correlation) between lipid peroxidation and toxicity of barracuda liver was found. Because iron and copper are well-known catalysts of hydroxyl radical production and lipid peroxidation in biological systems, the correlation between the concentrations of these metals in barracuda liver and lipid peroxidation and toxicity was also investigated. Cadmium was significantly correlated (p = 0.014) with the toxicity of barracuda livers. This study provides the first data concerning the concentration of iron, copper, and cadmium in the liver of the Caribbean barracuda. Of the three metals studied in barracuda liver, iron was the most abundant, followed by copper and cadmium. Lipid peroxidation was highly variable and detected in five (36%) of the liver samples. Lipid peroxidation was not statistically significantly correlated (p > 0.05) with concentrations of iron, copper, and cadmium in barracuda liver. Collectively, these findings provide additional evidence that lipid peroxidation can be a mechanistic component of ciguatera toxicity in the Caribbean barracuda.  相似文献   

15.
The purpose of the present study was to evaluate the effect of cadmium on some protein digestive and absorption enzymes in rats. Thirty-six rats were grouped into three groups of 12 animals each; one group received deionised water and acted as control. One group received 445 μM Cd and the last group received 890 μM Cd in their drinking water for a period of one month. The results obtained indicate that increasing the level of cadmium from 445 μM to 890 μM in the drinking water of the rats led to 29 and 23 increase in accumulated cadmium in the proximal and distal small intestine respectively. The body weight gain of rats exposed to 445 μM and 890 μMCd was decreased by about 24 and 43 respectively when compared with the control. The activities of carboxypeptidase A, dipeptidase and Na+/K+ ATPase were reduced in the mucosa of the proximal end of the small intestine of cadmium exposed rats. The reduction was dose dependent; with the 890 μM Cd exposed rats displaying the least activities. In the distal small intestine, the activities of these enzymes were restored in the 445 μM Cd exposed rats to levels that were not statistically different (P>0.05) from those observed in the controls. In the 890 μMCd exposed rats, dipeptidase activity improved by about 80 compared with the activity of the enzyme in the proximal small intestine. Likewise, Na+/K+ ATPase activity increased by about 125 compared with the observed level in the proximal small intestine. The study suggests that cadmium given to rats in drinking water compromise protein digestion and absorption of nutrients particularly in the proximal region of small intestine and could account for weight reduction associated with cadmium toxicity. Published online December 2004  相似文献   

16.
Pregnant female Wistar rats that received a control (100 ppm Zn) or a Zn-deficient diet (1.5 ppm Zn) from d 0 to 21, or nonpregnant normally fed female rats without or with five daily oral doses of 300 mg/kg salicylic acid were used for the experiments. In isolated mitochondria or microsomes from various maternal and fetal tissues, lipid peroxidation was determined as malondialdehyde formation measured by means of the thiobarbiturate method. Zn deficiency increased lipid peroxidation in mitochondria and microsomes from maternal and fetal liver, maternal kidney, maternal lung microsomes, and fetal lung mitochondria. Lipid peroxidation in fetal microsomes was very low. Zn deficiency produced a further reduction of lipid peroxidation in fetal liver microsomes. Salicylate increased lipid peroxidation in liver mitochondria and microsomes after addition in vitro and after application in vivo. The increase of lipid peroxidation by salicylate may be caused by two mechanisms: an increased cellular Fe uptake that, in turn, can increase lipid peroxidation and chelating Fe, in analogy to the effect of ADP in lipid peroxidation. The latter effect of salicylate is particularly expressed at increased Fe content.  相似文献   

17.
Vanadium (V) as sodium orthovanadate induces an increase in lipid peroxidation in the kidneys after a single subcutaneous or intraperitoneal injection to rats or mice. The rate of malondialdehyde (MDA) formation, an index of lipid peroxidation, by kidney homogenates increased by more than 100% 1 h after injection. Chronic exposure of rats to vanadium sulfate, initially through maternal milk and later in the drinking water, resulted after 10 weeks in a significant increase in MDA formation by kidney but not by other tissues. In both acute and chronic studies in rats and mice, no significant increase in lipid peroxidation by V treatment was detected in brain, heart, lung, spleen, or liver. In mice, administration of ascorbate prior to acute exposure to V diminished both toxicity, i.e., respiratory depression and limb paralysis, and the formation of MDA in kidney.  相似文献   

18.
Nitrosoamines such as N-nitrosodiethylamine (NDEA) produce oxidative stress due to generation of reactive oxygen species and may alter antioxidant defence system in the tissues. NDEA was administered ip as a single dose to rats in LD50 or in lower amounts and the animals were sacrificed after 0-48 hr of treatment. The results showed that lipid peroxidation in liver increased, however no significant increase in kidney LPO was observed after NDEA administration. Superoxide dismutase (SOD) and glutathione reductase (GSH-R) activity increased in liver, however, catalase (CAT) activity in liver was inhibited in NDEA treated rats. Kidney showed an increase in SOD activity after an initial decrease along with increase in GSH-R activity in NDEA treated rats. However, kidney CAT activity was not significantly altered in NDEA intoxicated rats. Serum transaminases, serum alkaline phosphatase blood urea nitrogen, serum creatinine and scrum proteins were elevated in NDEA treated rats. The results indicate NDEA-induced oxidative stress and alteration in antioxidant enzymes in liver and kidney to neutralise oxidative stress.  相似文献   

19.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05?mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

20.
The oxidative status of liver of female rats exposed to lead acetate and cadmium acetate either alone or in combination at a dose of 0.05 mg/kg body wt intraperitoneally for 15 days was studied. After the administration of lead alone, the activity of superoxide dismutase (SOD) decreased in liver, whereas no changes were observed in catalase (CAT) activity, and glutathione (GSH) and thiobarbituric acid (TBARS) levels. Cadmium exposure and combined exposure to lead and cadmium led to decrease in GSH content and increased TBARS levels. Moreover, animals exposed to either cadmium alone or in combination with lead showed a decrease in SOD activity and an increase in CAT activity. The in vitro experiments showed that vitamin E failed to restore the antioxidant enzyme activities in metal treated postmitochondrial supernatant fraction of liver. But Mn2+ ions protected the mitochondria from lipid peroxidation and could completely restore Mn-superoxide dismutase (Mn-SOD) activity following metal intoxication. The results of this study indicate that despite the ability of lead and cadmium to induce oxidative stress the effect in liver is not intensified by combined exposure to both lead and cadmium. The observed changes in various oxidative stress parameters in the liver of rats co-exposed to lead and cadmium may result from an independent effect of lead and /cadmium and also from their interaction such as changes in metal accumulation and content of essential elements like Cu, Zn and Fe. These results suggest that when lead and cadmium are present together in similar concentrations, cadmium mediates major effects due to its more reactive nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号