首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
The increased incidence of diabetes, coupled with the introduction of alternative delivery methods that rely on higher doses, is expected to result in a substantial escalation in the demand for affordable insulin in the future. Limitations in the capacity and economics of production will make it difficult for current manufacturing technologies to meet this demand. We have developed a novel expression and recovery technology for the economical manufacture of biopharmaceuticals from oilseeds. Using this technology, recombinant human precursor insulin was expressed in transgenic plants. Plant-derived insulin accumulates to significant levels in transgenic seed (0.13% total seed protein) and can be enzymatically treated in vitro to generate a product with a mass identical to that of the predicted product, DesB30-insulin. The biological activity of this product in vivo and in vitro was demonstrated using an insulin tolerance test in mice and phosphorylation assay performed in a mammalian cell culture system, respectively.  相似文献   

2.
通过将包括猪胰岛素前体(PIP)基因在内的表达框架克隆至质粒pKD1衍生的两种载体上而在酵母Kluyveromyceslactis中分泌表达猪胰岛素前体。根据放射免疫测定结果,猪胰岛素前体的表达水平为20~30mg/L。猪胰岛素前体经过转肽被转变为基因工程人胰岛素。分析结果表明,来自K.lactis的人胰岛素,其氨基酸组成、晶体形状和生物活力与天然胰岛素相同。  相似文献   

3.
This work combines two well-established technologies to generate a breakthrough in protein production and purification. The first is the production of polyhydroxybutyrate (PHB) granules in engineered strains of Escherichia coli. The second is a recently developed group of self-cleaving affinity tags based on protein splicing elements known as inteins. By combining these technologies with a PHB-specific binding protein, a self-contained protein expression and purification system has been developed. In this system, the PHB-binding protein effectively acts as an affinity tag for desired product proteins. The tagged product proteins are expressed in E. coli strains that also produce intracellular PHB granules, where they bind to the granules via the PHB-binding tag. The granules and attached proteins can then be easily recovered following cell lysis by simple mechanical means. Once purified, the product protein is self-cleaved from the granules and released into solution in a substantially purified form. This system has been successfully used at laboratory scale to purify several active test proteins at reasonable yield. By allowing the bacterial cells to effectively produce both the affinity resin and tagged target protein, the cost associated with the purification of recombinant proteins could be greatly reduced. It is expected that this combination of improved economics and simplicity will constitute a significant breakthrough in both large-scale production of purified proteins and enzymes and high-throughput proteomics studies of peptide libraries.  相似文献   

4.
Insulin is a polypeptide hormone which is produced by the β‐cell of pancreas and controls the blood glucose level in the human body. Enzymatic modification of human proinsulin using trypsin and carboxypeptidase B generally causes high accumulation of insulin derivatives, leading to more complicated purification processes. A simple method including citraconylation and decitraconylation in the enzymatic modification process was developed for the reduction of a major derivative, des‐threonine human insulin. Addition of 3.0 g citraconic anhydride per g protein into the reaction solution led to the citraconylation of lysine residues in human proinsulin and reduction of relative des‐threonine insulin content from 13.5 to 1.0%. After the enzymatic hydrolysis of the citraconylated proinsulin, 100% of lysine residues can be decitraconylated and restored by adjusting pH to 2–3 at 25 °C. Combination of hydrogen peroxide addition and citraconylation of proinsulin expressed in recombinant Escherichia coli remarkably improved the conversion yield of insulin from 52.7 to 77.7%. Consequently, citraconylation of lysine residues blocked the unexpected cleavage of human proinsulin by trypsin, minimized the formation of des‐threonine insulin and hence increased the production yield of active insulin. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

5.
Blood glucose lowering assay proved that [B16Ala]insulin and [B26Ala]insulin exhibit potency of acute blood glucose lowering in normal pigs, which demonstrates that they are fast- acting insulin. Single-chain precursor of [B16Ala]insulin and [B26Ala]insulin is [B16Ala]PIP and [B26Ala]PIP, respectively, which are suitable for gene expression. Secretory expression level of the precursors in methylotrophic yeast Pichia pastoris was quite high, 650 mg/L and 130 mg/L, respectively. In vivo biological assay showed that the two fast-acting insulins have full or nearly full biological activity. So both [B16Ala]insulin and [B26Ala]insulin can be well developed as fast-acting insulin for clinic use.  相似文献   

6.
Insulin has been successfully used in clinic treatment of diabetes for more than 80 years. However, the clinic practice has shown that regular insulin preparation used in clinic exhibits several intrinsic problems that have existed for a long time. One of the major problems is that insulin has a potency of self-association when its concentration is higher than physiological concentration (10-8—10-10 mol/L)[1,2]. The concentration of the regular insulin is higher than 10-4 mol/L. At such a hi…  相似文献   

7.
Human insulin is a hormone well-known to regulate the blood glucose level. Recombinant preproinsulin, a precursor of authentic insulin, is typically produced in E. coli as an inactive inclusion body, the solubilization of which needs the addition of reducing agents such as beta-mercaptoethanol. To make authentic insulin, recombinant preproinsulin is modified enzymatically by trypsin and carboxypeptidase B. The effects of beta-mercaptoethanol on the formation of human insulin derivatives were investigated in the enzymatic modification by using commercially available human proinsulin as a substrate. Addition of 1 mM beta-mercaptoethanol induced the formation of various insulin derivatives. Among them, the second major one, impurity 3, was found to be identical to the insulin B chain fragment from Phe1 to Glu21. Minimization of the formation of insulin derivatives and concomitant improvement of the production yield of human insulin were achieved by the addition of hydrogen peroxide. Hydrogen peroxide bound with beta-mercaptoethanol and thereby reduced the negative effects of beta-mercaptoethanol considerably. Elimination of the impurity 3 and other derivatives by the addition of over 10 mM hydrogen peroxide in the presence of beta-mercaptoethanol led to a 1.3-fold increase in the recovery efficiency of insulin, compared with those for the case without hydrogen peroxide. The positive effects of hydrogen peroxide were also confirmed with recombinant human preproinsulin expressed in recombinant E. coli as an inclusion body.  相似文献   

8.
人胰岛素原类似物(BKRA)基因的合成与表达   总被引:4,自引:0,他引:4  
为了利用基因工程生产胰岛素,按照已知的人胰岛素A、B链氨基酸序列和大肠杆菌偏爱的氨基酸密码子设计并合成了人胰岛素原类似物(BKRA)基因,其中以赖(K)-精(R)二肽编码区取代人胰岛素原C肽编码区.为了避免其编码蛋白在大肠杆菌中表达时被降解,通过人工接头将2个BKRA基因串联起来,接头部分氨基酸序列为Arg-Arg-Asn-Ser.将串联的BKRA基因克隆到表达载体pET-28a(+),实现了在大肠杆菌中的融合表达,表达产物以包含体形式存在,约占细菌总蛋白24%.表达产物氨基末端具有六组氨酸肽段,以HiTrap凝胶进行亲和层析,一步纯化可达纯度95%以上.放射免疫测定表明,纯化的融合蛋白具有胰岛素抗原活性.表明已构建成人胰岛素原类似物的高效表达菌株  相似文献   

9.
Abstract

In this work, Pichia pastoris was applied to produce human insulin by a simple procedure. The synthesized insulin precursor (ILP) gene was inserted into pPIC9K to obtain secretary expression plasmid pPIC9K/ILP. Pichia pastoris GS115 was transformed by pPIC9K/ILP and the high expresser was screened. In a 16 L fermentor, the insulin precursor production was 3.6 g/L. Insulin precursor, purified by one-step chromatography, was converted into human insulin by transpeptidation. The yield of the processing procedure from insulin precursor to insulin reached up to 70%. In vivo assay showed that the biological activity of the produced recombinant human insulin was 28.8 U/mg.  相似文献   

10.
For effective FMD control programme, India needs large quantities of cheaper diagnostics in addition to vaccine. Diagnostic reagents produced through conventional methods may not be able to meet such requirements. Alternatively, rDNA technology using suitable heterologous systems that permit production of recombinant antigens to the most native form may be exploited. Studies conducted in our laboratory have led us to select carboxy terminal part of VP1 for expression and evaluation. The protein, which was purified from E.coli under denaturing conditions, was renatured and its reactivity was compared with the protein expressed in insect cells through recombinant baculovirus. The expressed protein in the insect cell whole lysate reacted more efficiently with antibodies raised against whole virus than the purified and renatured protein produced in E.coli. But for its lower reactivity, protein produced from E.coli was found to be suitable in type detection. In addition, the size of the protein is small (16 kD) and production and purification of it from E.coli may be cost effective. Hence, it may be exploited for FMDV typing.  相似文献   

11.
For the production and purification of a single chain human insulin precursor four types of fusion peptides β-galactosidase (LacZ), maltose binding protein (MBP), glutathione-S-transferase (GST), and (His)6-tagged sequence (HTS) were investigated. RecombinantE. coli harboring hybrid genes was cultivated at 37°C for 1 h, and gene induction occurred when 0.2 mM of isopropyl-D-thiogalactoside (IPTG) was added to the culture broth, except forE. coli BL21 (DE3) pLysS harboring a pET-BA cultivation with 1.0 mM IPTG, followed by a longer than 4 h batch fermentation respectively. DEAE-Sphacel and Sephadex G-200 gel filtration chromatography, amylose affinity chromatography, glutathione-sepharose 4B affinity chromatography, and a nickel chelating affinity chromatography system as a kind of immobilized metal ion affinity chromatography (IMAC) were all employed for the purification of a single chain human insulin precursor. The recovery yields of the HTS-fused, GST-fused, MBP-fused, and LacZ-fused single chain human insulin precursors resulted in 47%, 20%, 20%, and 18% as the total protein amounts respectively. These results show that a higher recovery yield of the finally purified recombinant peptides was achieved when affinity column chromatography was employed and when the fused peptide had a smaller molecular weight. In addition the pET expression system gave the highest productivity of a fused insulin precursor due to a two-step regulation of the gene expression, and the HTS-fused system provided the highest recovery of a fused insulin precursor based on a simple and specific separation using the IMAC technique  相似文献   

12.
基因组编辑技术是进行功能基因组研究的重要工具.锌指核酸酶技术(ZFNs)、类转录激活因子核酸酶技术(TALENs)以及CRISPR/Cas技术是近年来发展起来的3种主流基因组编辑技术.这3种基因组编辑技术的原理都是通过在生物基因组特定位点制造DNA断裂损伤,从而激活机体自身的DNA损伤修复机制,在此过程中引发各种变异.ZFNs是最早发展的通用基因组编辑技术,可用以实施定点敲除和定点敲入变异,但ZFNs技术的发展受限于构建难度大、成本高等缺点.TALENs技术在ZFNs基础上发展而来,较ZFNs技术而言,TALENs技术具备构建灵活度高、成本低等优势.不同于ZFNs与TALENs技术,CRISPR/Cas技术具有独特的DNA靶向机制,这种机制使其非常适合进行多位点编辑.目前,3种技术都在多种物种中成功测试,例如小鼠、斑马鱼、果蝇、线虫和家蚕.在后基因组时代,这些新技术工具必将在未来功能基因组研究中发挥重大作用.  相似文献   

13.
Methods have been developed aimed at applying at high-throughput technology for expression of cloned cDNAs in yeast. Yeast is a eukaryotic host, which produces soluble recombinant proteins and is capable of introducing post-translational modifications of protein. It is, thus, an appropriate expression system both for the routine expression of various cDNAs or protein domains and for the expression of proteins, which are not correctly expressed in Escherichia coli. Here, we describe a standard system in Saccharomyces cerevisiae, based on a vector for intracellular protein expression, where the gene products are fused to specific peptide sequences (tags). These epitope tags, the N-terminal His(6) tag and the C-terminal StrepII tag, allow subsequent immunological identification and purification of the gene products by a two-step affinity chromatography. This method of dual-tagged recombinant protein purification eliminates contamination by degraded protein products. A miniaturization of the procedures for cloning, expression, and detection was performed to allow all steps to be carried out in 96-well microtiter plates. The system is, thus, suitable for automation. We were able to analyze the simultaneous protein expression of a large number of cDNA clones due to the highly parallel approach of protein production and purification. The microtiter plate technology format was extended to quantitative analysis. An ELISA-based assay was developed that detects StrepII-tagged proteins. The application of this high-throughput expression system for protein production will be a useful tool for functional and structural analyses of novel genes, identified by the Human Genome Project and other large-scale sequencing projects.  相似文献   

14.
Human granulocyte-colony stimulating factor (hG-CSF), an important biopharmaceutical drug used in oncology, is currently produced mainly in Escherichia coli. Expression of human hG-CSF gene in E. coli is very low, and therefore a semisynthetic, codon-optimized hG-CSF gene was designed and subcloned into pET expression plasmids. This led to a yield of over 50% of the total cellular proteins. We designed a new approach to biosynthesis at low temperature, enabling the formation of "nonclassical" inclusion bodies from which correctly folded protein can be readily extracted by nondenaturing solvents, such as mild detergents or low concentrations of polar solvents such as DMSO and nondetergent sulfobetaines. FT-IR analysis confirmed different nature of inclusion bodies with respect to the growth temperature and indicated presence of high amounts of very likely correctly folded reduced hG-CSF in nonclassical inclusion bodies. The yield of correctly folded, functional hG-CSF obtained in this way exceeded 40% of the total hG-CSF produced in the cells and is almost completely extractable under nondenaturing conditions. The absence of the need to include a denaturation/renaturation step in the purification process allows the development of more efficient processes characterized by higher yields and lower costs and involving environment-friendly technologies. The technology presented works successfully at the 50-L scale, producing nonclassical inclusion bodies of the same quality. The approach developed for the production of hG-CSF could be extended to other proteins; thus, a broader potential for industrial exploitation is envisaged.  相似文献   

15.
The Vent DNA polymerase gene from Thermococcus litoralis contains two in-frame insertions that must be spliced out to form the mature polymerase. Primer extension and cDNA PCR revealed no evidence of spliced RNA to account for this editing. In contrast, pulse-chase analysis indicated that expression constructs lacking the first insertion produced a protein precursor in Escherichia coli that was processed post-translationally to form polymerase and I-TliI, the endonuclease protein that is the product of the second insertion. At least one intermediate, which migrated more slowly than the precursor and may be branched, was also detected. Amino acid substitutions at the splice junction slowed or blocked the protein splicing reaction. Processing occurs in several heterologous systems, indicating either self-splicing or ubiquitous splicing factors. Processing occurs in a mutant lacking I-TliI endonuclease activity, establishing the independence of splicing and endonuclease activities.  相似文献   

16.
去B链羧端七肽人胰岛素的分离纯化及性质研究   总被引:1,自引:0,他引:1  
在大肠杆菌温度诱导体系中以非融合方式进行去B链羧端七肽人胰岛素原基因的表达,获得去B链羧端七肽人胰岛素原,表达产物占细胞总蛋白量的13%,表达产物经SephadexG-50柱层析分离及胰蛋白酶和羧肽酶B的酶促转化等步骤,可得到纯度达94%以上的去B链羧端七肽人胰岛素,其氨基酸组成与预期值相符,受体活性是标准猪胰岛素的1%.  相似文献   

17.
Yeast secretory expression of insulin precursors   总被引:9,自引:0,他引:9  
Since the 1980s, recombinant human insulin for the treatment of diabetes mellitus has been produced using either the yeast Saccharomyces cerevisiae or the prokaryote Escherichia coli. Here, development of the insulin secretory expression system in S. cerevisiae and its subsequent optimisation is described. Expression of proinsulin in S. cerevisiae does not result in efficient secretion of proinsulin or insulin. However, expression of a cDNA encoding a proinsulin-like molecule with deletion of threonineB30 as a fusion protein with the S. cerevisiaeα-factor prepro-peptide (leader), followed either by replacement of the human proinsulin C-peptide with a small C-peptide (e.g. AAK), or by direct fusion of lysineB29 to glycineA1, results in the efficient secretion of folded single-chain proinsulin-like molecules to the culture supernatant. The secreted single-chain insulin precursor can then be purified and subsequently converted to human insulin by tryptic transpeptidation in organic–aqueous medium in the presence of a threonine ester. The leader confers secretory competence to the insulin precursor, and constructed (synthetic) leaders have been developed for efficient secretory expression of the insulin precursor in the yeasts S. cerevisiae and Pichia pastories. The Kex2 endoprotease, specific for dibasic sites, cleaves the leader-insulin precursor fusion protein in the late secretory pathway and the folded insulin precursor is secreted to the culture supernatant. However, the Kex2 endoprotease processing of the pro-peptide-insulin precursor fusion protein is incomplete and a significant part of the pro-peptide-insulin precursor fusion protein is secreted to the culture supernatant in a hyperglycosylated form. A spacer peptide localised between the leader and the insulin precursor has been developed to optimise Kex2 endoprotease processing and insulin precursor fermentation yield. Received: 8 February 2000 / Received revision: 2 May 2000 / Accepted: 2 May 2000  相似文献   

18.
人β2-微球蛋白基因克隆及其在大肠杆菌中的高效表达   总被引:18,自引:1,他引:18  
β2-微球蛋白(β2m)是主要组织相容性复合体(MHC)Ⅰ类分子的轻链部分,为制备MHCⅠ类分子四聚体的必要成分。根据已报道的序列设计特异引物,利用RT-PCR方法从人白细胞中克隆了β2m基因,并构建了成熟β2m的原核表达载体,在大肠杆菌中得到高效表达。表达的β2m大部分在包涵体中,经洗涤、变性和复性,并以强阴离子交换柱层析纯化,获得SDS-PAGE纯的人重组β2m,Western印迹法分析表明该蛋白具有与抗人天然β2m抗体反应的特性。此工作为制备MHCⅠ类分子四聚体奠定基础。  相似文献   

19.
Objective: We investigated subcutaneous adipose tissue expression of FOXC2 and selected genes involved in brown adipogenesis in adult human subjects in whom we have previously identified a reduced potential of precursor cell commitment to adipose‐lineage differentiation in relation to insulin resistance. Research Methods and Procedure: Gene expression was studied using quantitative real time polymerase chain reaction. The relation between the expression of brown adipogenic genes and the genes involved in progenitor cell commitment, adipose cell size, and insulin sensitivity in vivo was analyzed. Results: The expression of FOXC2, MASK, MAP3K5, retinoblastoma protein (pRb), peroxisome proliferator‐activated protein gamma (PPARγ), and retinoid X receptor gamma (RXRγ) was decreased in the insulin‐resistant compared with insulin‐sensitive subjects, whereas PPARγ‐2 and CCAAT/enhancer binding protein alpha (C/EBPα) showed no differential expression. The FOXC2 expression correlated with that of Notch and Wnt signaling genes, as well as of the genes studied participating in brown adipogenesis, including MASK, MAP3K5, PPARγ, pRb, RXRγ, and PGC‐1. A second‐level correlation between PPARγ and UCP‐1 was also significant. In addition, the expression of MASK, MAP3K5, pRb, RXRγ, and PGC‐1 inversely correlated with adipose cell mass and also correlated with the glucose disposal rate in vivo. Discussion: Our results suggest that a reduced brown adipose phenotype is associated with insulin resistance and that a basal brown adipose phenotype may be important for maintaining normal insulin sensitivity.  相似文献   

20.
The pharmaceutical industry is moving towards a profitability gap between increasing costs and decreasing prices. Finally, management has understood that mergers and acquisitions, high throughput screening, and biotechnology alone will not save the companies' earnings. Therefore, classical approaches like the optimization of production technologies for drug substances, that might help to increase profitability, are receiving increasing attention. This paper shows how the combination of innovative components will guide the way to very efficient and cost‐effective production. The first component is the design and manufacturing of production facilities. The second component is a process streamlining of the production process. The key technologies discussed here are process control and miniplant technology. For these technologies a brief outlook on future trends is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号