首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyte chemoattractant protein 1 (MCP-1) has an important influence on monocyte migration into sites of inflammation. Our understanding of the signal transduction pathways involved in the response of monocytes to MCP-1 is quite limited yet potentially significant for understanding and manipulating the inflammatory response. Prior studies have demonstrated a crucial regulatory role for cytosolic phospholipase A(2) (cPLA(2)) in monocyte chemotaxis to MCP-1. In these studies we investigated the role for another PLA(2), calcium-independent PLA(2) (iPLA(2)) in comparison to cPLA(2). Pharmacological inhibitors of PLA(2) were found to substantially inhibit chemotaxis. Using antisense oligodeoxyribonucleotide treatment we found that iPLA(2) expression is required for monocyte migration to MCP-1. Complete blocking of the chemotactic response was observed with inhibition of either iPLA(2) or cPLA(2) expression by their respective antisense oligodeoxyribonucleotide. In reconstitution experiments, lysophosphatidic acid completely restored MCP-1-stimulated migration in iPLA(2)-deficient monocytes, whereas lysophosphatidic acid was without effect in restoring migration in cPLA(2)-deficient monocytes. To the contrary, arachidonic acid fully restored migration of cPLA(2)-deficient monocytes while having no effect on the iPLA(2)-deficient monocytes. Additional studies revealed that neither enzyme appears to be upstream of the other indicating that iPLA(2) and cPLA(2) represent parallel regulatory pathways. These data demonstrate novel and distinct roles for these two phospholipases in this critical step in inflammation.  相似文献   

2.
Monocyte chemoattractant protein (MCP-1) is a major chemoattractant for monocytes and T-lymphocytes although it can cause migration of the HUVECs. We used monocytic cell line THP-1, monocytes of human peripheral blood, and HUVECs to study MCP-1 receptor-mediated cell migration. We showed that THP-1 and the monocytes chemotaxis was decreased in presence of specific inhibitors of p 38 MAP-kinase. Furthermore, it was almost completely diminished by inhibitor of tyrosine kinases. In contrast, MCP-1-stimulated migration of HUVECs was abrogated by specific inhibitor of ERK1/2 MAP-kinases and, to a lesser extent, by blocking tyrosine kinases. These results suggest that intracellular signal pathways activated by MCP-1 in monocytes and HUVECs, are distinct.  相似文献   

3.
Monocyte chemoattractant protein-1 (MCP-1) is important in attracting monocytes to sites of inflammation. Besides induction of monocyte recruitment, MCP-1 can also affect chemotactic response of endothelial cells. The molecular mechanisms involved in MCP-1-induced cell migration are poorly understood. In the current investigation, we demonstrate activation of p42/44(ERK1/2) and p38 mitogen-activated protein kinases (MAPKs), phosphatydilinositol-3-kinase (PI3K) and Src-kinases in both monocytes and endothelial cells stimulated with MCP-1 in vitro. The response was rapid and time-dependent, detectable within 3 min of MCP-1 stimulation. MCP-1-induced phosphorylation of p42/44(ERK1/2) MAPKs was partially blocked by inhibitor of PI3K LY294002, while phosphorylation of p38 MAPK was diminished to a greater extent in presence of Src-kinase inhibitor PP2. There was a substantial inhibition of monocyte migration upon treatment with inhibitors of p38 MAPK, at the same time inhibition of p42/44(ERK1/2) MAPK activation had no effect. On the contrary, the MCP-1-stimulated chemotaxis of endothelial cells was completely abolished by inhibitors of PI3K and p42/44(ERK1/2), but not by p38 MAPK inhibitors. These results suggest that parallel signal transduction pathways are activated by MCP-1, and that depending on the cell type these pathways differentially contribute to cell chemotactic activity.  相似文献   

4.
There is a high degree of cross-talk between tyrosine phosphorylation and the serine/threonine phosphorylation signaling pathways. Here we show a physical and functional interaction between the classical protein kinase C isoform (cPKC), PKCalpha, and two major nonreceptor tyrosine kinases in platelets, Syk and Src. In the presence of the cPKC-selective inhibitor Go6976, platelet 5-hydroxytryptamine release was abolished in response to co-activation of glycoproteins VI and Ib-IX-V by the snake venom alboaggregin A, whereas platelet aggregation was substantially inhibited. Of the two platelet cPKCs, PKCalpha but not PKCbeta was activated, occurring in an Syk- and phospholipase C-dependent manner. Syk and PKCalpha associate in a stimulation-dependent manner, requiring Syk but not PKC activity. PKCalpha and Syk also co-translocate from the cytosol to the plasma membrane upon platelet activation, in a manner dependent upon the activities of both kinases. Although PKCalpha is phosphorylated on tyrosine downstream of Syk, we provide evidence against phosphorylation of Syk by PKCalpha, consistent with a lack of effect of PKCalpha inhibition on Syk activity. PKCalpha also associates with Src; although in contrast to interaction with Syk, PKCalpha activity is required for the association of these kinases but not the stimulation-induced translocation of Src to the cell membrane. Finally, the activity of Src is negatively regulated by PKC, as shown by potentiation of Src activity in the presence of the PKC inhibitors GF109203X or Go6976. Therefore, there is a complex interplay between PKCalpha, Syk, and Src involving physical interaction, phosphorylation, translocation within the cell, and functional activity regulation.  相似文献   

5.
Phospholipases A(2) (PLA(2)) are potent regulators of the inflammatory response. We have observed that Group IV cPLA(2) activity is required for the production of superoxide anion (O(2)(-)) in human monocytes [Li Q., Cathcart M.K. J. Biol. Chem. 272 (4) (1997) 2404-2411.]. We have previously identified PKCalpha as a kinase pathway required for monocyte O(2)(-) production [Li Q., Cathcart M.K. J. Biol. Chem. 269 (26) (1994) 17508-17515.]. We therefore investigated the potential interaction between PKCalpha and cPLA(2) by evaluating the requirement for specific PKC isoenzymes in the process of activating cPLA(2) enzymatic activity and protein phosphorylation upon monocyte activation. We first showed that general PKC inhibitors and antisense oligodeoxyribonucleotides (ODN) to the cPKC group of PKC enzymes inhibited cPLA(2) activity. To distinguish between PKCalpha and PKCbeta isoenzymes in regulating cPLA(2) protein phosphorylation and enzymatic activity, we employed our previously characterized PKCalpha or PKCbeta isoenzyme-specific antisense ODN [Li Q., Subbulakshmi V., Fields A.P., Murray, N.R., Cathcart M.K., J. Biol. Chem. 274 (6) (1999) 3764-3771]. Suppression of PKCalpha expression, but not PKCbeta expression, inhibited cPLA(2) protein phosphorylation and enzymatic activity. Additional studies ruled out a contribution by Erk1/2 to cPLA(2) phosphorylation and activation. We also found that cPLA(2) co-immunoprecipitated with PKCalpha and vice versa. In vitro studies demonstrated that PKCalpha could directly phosphorylate cPLA(2).and enhance enzymatic activity. Finally, we showed that addition of arachidonic acid restored the production of O(2)(-) in monocytes defective in either PKCalpha or cPLA(2) expression. Taken together, our data suggest that PKCalpha, but not PKCbeta, is the predominant cPKC isoenzyme required for cPLA(2) protein phosphorylation and maximal induction of cPLA(2) enzymatic activity upon activation of human monocytes. Our data also support the concept that the requirements for PKCalpha and cPLA(2) in O(2)(-) generation are solely due to their seminal role in generating arachidonic acid.  相似文献   

6.
The role of protein kinase C (PKC) in contraction of the human myometrium induced by endothelin-1 (ET-1) was investigated at the end of pregnancy. The expression and subcellular distribution of PKC isoforms were examined by Western blot analysis using isoform-specific antibodies. At least three conventional PKC isoforms (cPKC; alpha, beta1, and beta2), two novel PKC isoforms (epsilon and delta), and an atypical PKC isoform (zeta) were detected in pregnant myometrium. Quantitative immunoblotting revealed that all these isoforms were mainly distributed in the particulate fraction. The lack of a calcium chelator to modify the particulate sequestration of cPKC suggests an interaction with an anchoring protein such as receptor-activated C kinase-1, which is evidenced in the particulate fraction of the pregnant myometrium. Of the six isoforms, only PKCbeta1, PKCbeta2, PKCdelta, and PKCzeta were translocated to the particulate fraction, and PKCepsilon to the cytoskeletal fraction, after stimulation with ET-1. Involvement of PKC in the ET-1-induced contractile response is supported by the inhibition caused by the PKC inhibitor calphostin C. However, we demonstrated that the selective cPKC isoform inhibitor, G? 6976, as well as the substantial depletion of PKCbeta1 and PKCepsilon and the partial depletion of PKCalpha and PKCdelta by a long-term treatment with phorbol 12,13-dibutyrate did not prevent ET-1-induced contraction. Accordingly, our results suggest that PKCdelta and PKCzeta activation mediated ET-1-induced contraction, whereas cPKC isoforms were not implicated in the human pregnant myometrium.  相似文献   

7.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

8.
Wood CD  Kelly AP  Matthews SA  Cantrell DA 《FEBS letters》2007,581(18):3494-3498
Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction.  相似文献   

9.
Protein kinase C is a family of serine/threonine protein kinases involved in many cellular responses, including cell survival and apoptosis. We have recently found that specific inhibition of the PKCα isoform by nucleic acid enzymes induced apoptosis in sensitive cells. Here we show that in PKCα DNA enzyme-treated glioma cells the activation of MAP kinases ERK1/2 is inhibited, whereas their total level was not significantly affected by the treatment. Similar results were obtained when the overall activity of the PKC was inhibited by calphostin, a specific inhibitor for PKC. These results would indicate that the ERK1/2 signaling pathway plays an important role in glioma cell survival and that the PKCα isoform is the main modulator of this pathway. Furthermore, we show that the ERK1/2 signaling pathway is required for the constitutive expression of the basic fibroblast growth factor, a potent mitogen for glioma cell growth.  相似文献   

10.
The MDR3 protein is a transporter of phosphatidylcholine on the canalicular membrane of human hepatocytes. Previously we showed that the expression of MDR3 mRNA was down-regulated by phorbol 12-myristate 13-acetate (PMA) in human Chang liver cells. In the present study, to elucidate the isoform of protein kinase C (PKC), which influences the level of MDR3 protein, we investigated the effects of PKC-specific inhibitors and antisense oligonucleotides. The level of protein decreased around 50% after treatment for 3-5 days using the dosage of PMA effective against the mRNA expression. The half-life of the MDR3 protein was estimated to be about 5 days. This decrease was antagonized by GF109203X, a non-selective inhibitor of PKCs, and G?6976, a selective inhibitor for PKCalpha/beta. These inhibitors also suppressed the reduction in MDR3 protein. To specify the isoform of PKC, the cells were treated with antisense oligonucleotide of PKCalpha or PKCbeta. The suppressive effects on MDR3 mRNA of PMA were attenuated in antisense PKCbeta-treated cells, but those in antisense PKCalpha-treated cells were not attenuated. These suggested that PKCbeta plays a regulatory role in the expression of MDR3.  相似文献   

11.
Recombinant monocyte-chemotactic and activating factor (rMCAF; alternative acronyms MCP-1, TDCF, human JE) induced migration of human monocytes across polycarbonate or nitrocellulose filters. Maximal induction of migration was observed at a concentration of 10 ng/ml (10(-9) M). Checkerboard analysis revealed that rMCAF elicited true gradient-dependent chemotactic migration, although a gradient independent chemokinetic effect was observed at low concentrations (1-5 ng/ml). rMCAF caused a rapid (less than 5 s) and transient (approximately 1.5 min) increase of free cytosolic Ca2+ ions, as assessed by the fura-2 probe. No Ca2+ increase was detected in neutrophils or lymphocytes stimulated by rMCAF. Studies conducted in the absence of extracellular Ca2+ or in the presence of Ni2+ (an inhibitor of Ca2+ influx) suggested that the increase of intracellular Ca2+ induced by rMCAF is dependent on the influx of extracellular Ca2+ through plasma membrane channels. Bordetella pertussis toxin inhibited the intracellular Ca2+ elevation and chemotaxis caused by rMCAF. The possible involvement of Ca(2+)-dependent protein kinases in rMCAF signaling pathway(s) was explored using inhibitors. Inhibitors of GMP-dependent kinase and myosin L chain kinase had no effect on rMCAF-induced monocyte migration. In contrast, protein kinase C/cAMP-dependent kinase inhibitors (such as, C-I, H-7, HA-1004, KT5720, and Staurosporine) markedly decreased rMCAF induced chemotaxis suggesting the involvement of a serine/threonine protein kinase, possibly protein kinase C, in rMCAF signaling pathway.  相似文献   

12.
13.
Cohen S  Braiman A  Shubinsky G  Isakov N 《FEBS letters》2011,585(20):3208-3215
Members of the protein kinase C (PKC) family of serine/threonine kinases have been implicated in several physiological processes regulating the activation response of platelets. They are involved in processes leading to granule secretion, integrin activation, platelet aggregation and spreading, and procoagulation. The protein kinase C θ (PKCθ) isoform, which was originally identified in T lymphocytes, is also expressed at relatively high levels in platelets, wherein it is involved in the regulation of hemostasis and thrombosis. Recent studies suggest a role for PKCθ in protease-activated receptor (PAR)-, glycoprotein VI (GPVI) receptor- and glycoprotein α(IIb)β(3) integrin receptor-linked signal transduction pathways. The present review focuses on the latest observations relevant to the role of PKCθ in platelet activation.  相似文献   

14.
BackgroundProtein Kinase C (PKC) is a promiscuous serine/threonine kinase regulating vasodilatory responses in vascular endothelial cells. Calcium-dependent PKCbeta (PKCβ) and calcium-independent PKCeta (PKCη) have both been implicated in the regulation and dysfunction of endothelial responses to shear stress and agonists.ObjectiveWe hypothesized that PKCβ and PKCη differentially modulate shear stress-induced nitric oxide (NO) production by regulating the transduced calcium signals and the resultant eNOS activation. As such, this study sought to characterize the contribution of PKCη and PKCβ in regulating calcium signaling and endothelial nitric oxide synthase (eNOS) activation after exposure of endothelial cells to ATP or shear stress.MethodsBovine aortic endothelial cells were stimulated in vitro under pharmacological inhibition of PKCβ with LY333531 or PKCη targeting with a pseudosubstrate inhibitor. The participation of PKC isozymes in calcium flux, eNOS phosphorylation and NO production was assessed following stimulation with ATP or shear stress.ResultsPKCη proved to be a robust regulator of agonist- and shear stress-induced eNOS activation, modulating calcium fluxes and tuning eNOS activity by multi-site phosphorylation. PKCβ showed modest influence in this pathway, promoting eNOS activation basally and in response to shear stress. Both PKC isozymes contributed to the constitutive and induced phosphorylation of eNOS. The observed PKC signaling architecture is intricate, recruiting Src to mediate a portion of PKCη's control on calcium entry and eNOS phosphorylation. Elucidation of the importance of PKCη in this pathway was tempered by evidence of a single stimulus producing concurrent phosphorylation at ser1179 and thr497 which are antagonistic to eNOS activity.ConclusionsWe have, for the first time, shown in a single species in vitro that shear stress- and ATP-stimulated NO production are differentially regulated by classical and novel PKCs. This study furthers our understanding of the PKC isozyme interplay that optimizes NO production. These considerations will inform the ongoing design of drugs for the treatment of PKC-sensitive cardiovascular pathologies.  相似文献   

15.
The G-protein-coupled receptor agonists CXCL12 (SDF-1, a chemokine) and thrombin showed opposite effects on growth and survival of multipotent and erythroid human hematopoietic progenitor cells. CXCL12 promoted growth in multipotent cells by activating the RhoA-Rho kinase pathway. Its effect was largely blocked by Y-27632, a specific inhibitor of Rho kinase, and by clostridial toxin B, a specific inhibitor of Rho family proteins. Rho activation required a G(i)-mediated stimulation of tyrosine kinases, which was blocked by PP2 and tyrphostin AG 490, inhibitors of Src and Jak type kinases, respectively. By contrast, in erythroid cells, inhibitors of Src family and c-Abl tyrosine kinases (tyrphostin AG 82, PP2, imatinib) enhanced protein kinase C (PKC)-dependent cell growth and antagonized thrombin-promoted apoptosis by specifically stimulating PKCbeta activity. The PKC activating phorbol ester PMA (a growth factor in erythroid cells) induced the activation of Lyn and c-Abl tyrosine kinases, thus establishing a feedback inhibition of PKCbeta. Hence, developmental stage-specific crosstalk between PKC subtypes and tyrosine kinases appear to determine whether growth and survival of hematopoietic cells are promoted or inhibited by G-protein-coupled receptor agonists.  相似文献   

16.
Monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis is a major event in inflammatory disease. Our prior studies have demonstrated that MCP-1-dependent chemotaxis requires release of arachidonic acid (AA) by activated cytosolic phospholipase A2 (cPLA2). Here we investigated the involvement of AA metabolites in chemotaxis. Neither cyclooxygenase nor lipoxygenase pathways were required, whereas pharmacologic inhibitors of both the cytochrome-P450 (CYP) and the soluble epoxide hydrolase (sEH) pathways blocked monocyte chemotaxis to MCP-1. To verify specificity, we demonstrated that the CYP and sEH products epoxyeiscosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs), respectively, restored chemotaxis in the presence of the inhibitors, indicating that sEH-derived products are essential for MCP-1-driven chemotaxis. Importantly, DHETs also rescued chemotaxis in cPLA2-deficient monocytes and monocytes with blocked Erk1/2 activity, because Erk controls cPLA2 activation. The in vitro findings regarding the involvement of CYP/sEH pathways were further validated in vivo using two complementary approaches measuring MCP-1-dependent chemotaxis in mice. These observations reveal the importance of sEH in MCP-1-regulated monocyte chemotaxis and may explain the observed therapeutic value of sEH inhibitors in treatment of inflammatory diseases, cardiovascular diseases, pain, and even carcinogenesis. Their effectiveness, often attributed to increasing EET levels, is probably influenced by the impairment of DHET formation and inhibition of chemotaxis.  相似文献   

17.
Abstract: The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

18.
Adhesion of fibroblasts to extracellular matrices via integrin receptors is accompanied by extensive cytoskeletal rearrangements and intracellular signaling events. The protein kinase C (PKC) family of serine/threonine kinases has been implicated in several integrin-mediated events including focal adhesion formation, cell spreading, cell migration, and cytoskeletal rearrangements. However, the mechanism by which PKC regulates integrin function is not known. To characterize the role of PKC family kinases in mediating integrin-induced signaling, we monitored the effects of PKC inhibition on fibronectin-induced signaling events in Cos7 cells using pharmacological and genetic approaches. We found that inhibition of classical and novel isoforms of PKC by down-regulation with 12-0-tetradeconoyl-phorbol-13-acetate or overexpression of dominant-negative mutants of PKC significantly reduced extracellular regulated kinase 2 (Erk2) activation by fibronectin receptors in Cos7 cells. Furthermore, overexpression of constitutively active PKCalpha, PKCdelta, or PKCepsilon was sufficient to rescue 12-0-tetradeconoyl-phorbol-13-acetate-mediated down-regulation of Erk2 activation, and all three of these PKC isoforms were activated following adhesion. PKC was required for maximal activation of mitogen-activated kinase kinase 1, Raf-1, and Ras, tyrosine phosphorylation of Shc, and Shc association with Grb2. PKC inhibition does not appear to have a generalized effect on integrin signaling, because it does not block integrin-induced focal adhesion kinase or paxillin tyrosine phosphorylation. These results indicate that PKC activity enhances Erk2 activation in response to fibronectin by stimulating the Erk/mitogen-activated protein kinase pathway at an early step upstream of Shc.  相似文献   

19.
In addition to providing the framework for peptide presentation, major histocompatibility complex class I (MHC-I) molecules can act as signal transducing molecules in lymphoid cells. Here we show that the mobilization of intracellular calcium, which follows crosslinking of MHC-I molecules on human B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine/threonine kinases in MHC-I-mediated apoptosis in human B-cells and suggest the presence of several MHC-I signaling pathways leading to diverse effects in these cells.  相似文献   

20.
S K Biswas  A Sodhi  S Paul 《Nitric oxide》2001,5(6):566-579
Monocyte chemoattractant protein 1 (MCP-1) is an important mediator of monocyte/macrophage recruitment and activation at the sites of chronic inflammation and neoplasia. In the current study, the role of nitrogen monoxide (NO) in the activation of murine peritoneal macrophages to the tumoricidal state in response to in vitro MCP-1 treatment and the regulatory mechanisms involved therein were investigated. Murine peritoneal macrophages upon activation with MCP-1 showed a dose- and time-dependent production of NO together with increased tumoricidal activity against P815 mastocytoma cells. N-monomethyl-l-arginine (L-NMMA), a specific inhibitor of the l-arginine pathway, inhibited the MCP-1-induced NO secretion and generation of macrophage-mediated tumoricidal activity against P815 (NO-sensitive, TNF-resistant) cells but not the L929 (TNF-sensitive, NO-resistant) cells. These results indicated l-arginine-dependent production of NO to be one of the effector mechanisms contributing to the tumoricidal activity of MCP-1-treated macrophages. Supporting this fact, expression of iNOS mRNA was also detected in the murine peritoneal macrophages upon treatment with MCP-1. Investigating the signal transduction pathway responsible for the NO production by the MCP-1-activated murine peritoneal macrophages, it was observed that the pharmacological inhibitors wortmannin, H-7 (1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride), and PD98059 blocked the MCP-1-induced NO production, suggesting the probable involvement of phosphoinositol-3-kinase, protein kinase C, and p42/44 MAPkinases in the above process. Various modulators of calcium and calmodulin (CaM) such as EGTA, nifedipine, TMB-8 (3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester), A23187, and W-7 (N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide) were also found to modulate the in vitro macrophage NO release in response to MCP-1. This observation indicated the regulatory role of calcium/CaM in the process of MCP-1-induced macrophage NO production. Similarly, the role of serine/threonine and protein tyrosine phosphatases in the above pathway was suggested using the specific inhibitors of these phosphatases, okadaic acid and sodium orthovanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号