首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During meiosis, chromosome numbers are halved, leading to haploid gametes, a process that is crucial for the maintenance of a stable genome through successive generations. The process for the accurate segregation of the homologues starts in pre-meiosis as each homologue is replicated and the respective products are held together as two sister chromatids via specific cohesion proteins. At the start of meiosis, each chromosome must recognise its homologue from amongst all the chromosomes present in the nucleus and then associate or pair with that homologue. This process of homologue recognition in meiosis is more complicated in polyploids because of the greater number of related chromosomes. Despite the presence of these related chromosomes, for polyploids such as wheat to produce viable gametes, they must behave as diploids during meiosis with only true homologues pairing. In this review, the relationship between the Ph1 cyclin-dependent kinase (CDK)-like genes in wheat and the CDK2 genes in mammals and their involvement in controlling this process at meiosis is examined.  相似文献   

2.
During meiosis, chromosome numbers are halved, leading to haploid gametes, a process that is crucial for the maintenance of a stable genome through successive generations. The process for the accurate segregation of the homologues starts in pre-meiosis as each homologue is replicated and the respective products are held together as two sister chromatids via specific cohesion proteins. At the start of meiosis, each chromosome must recognise its homologue from amongst all the chromosomes present in the nucleus and then associate or pair with that homologue. This process of homologue recognition in meiosis is more complicated in polyploids because of the greater number of related chromosomes. Despite the presence of these related chromosomes, for polyploids such as wheat to produce viable gametes, they must behave as diploids during meiosis with only true homologues pairing. In this review, the relationship between the Ph1 cyclin-dependent kinase (CDK)-like genes in wheat and the CDK2 genes in mammals and their involvement in controlling this process at meiosis is examined.  相似文献   

3.
Hexaploid wheat possesses 42 chromosomes derived from its three ancestral genomes. The 21 pairs of chromosomes can be further divided into seven groups of six chromosomes (one chromosome pair being derived from each of the three ancestral genomes), based on the similarity of their gene order. Previous studies have revealed that, during anther development, the chromosomes associate in 21 pairs via their centromeres. The present study reveals that, as a prelude to meiosis, these 21 chromosome pairs in hexaploid (and tetraploid) wheat associate via the centromeres into seven groups as the telomeres begin to cluster. This results in the association of multiple chromosomes, which then need to be resolved as meiosis progresses. The formation of the seven chromosome clusters now explains the occasional occurrence of remnants of multiple associations, which have been reported at later stages of meiosis in hexaploid (and tetraploid) wheat. Importantly, the chromosomes have the opportunity to be resorted via these multiple interactions. As meiosis progresses, such interactions are resolved through the action of loci such as Ph1, leaving chromosomes as homologous pairs.  相似文献   

4.
5.
Many plant species, including important crops like wheat, are polyploids that carry more than two sets of genetically related chromosomes capable of meiotic pairing. To safeguard a diploid-like behavior at meiosis, many polyploids evolved genetic loci that suppress incorrect pairing and recombination of homeologues. The Ph1 locus in wheat was proposed to ensure homologous pairing by controlling the specificity of centromere associations that precede chromosome pairing. Using wheat chromosomes that carry rye centromeres, we show that the centromere associations in early meiosis are not based on homology and that the Ph1 locus has no effect on such associations. Although centromeres indeed undergo a switch from nonhomologous to homologous associations in meiosis, this process is driven by the terminally initiated synapsis. The centromere has no effect on metaphase I chiasmate chromosome associations: homologs with identical or different centromeres, in the presence and absence of Ph1, pair the same. A FISH analysis of the behavior of centromeres and distal chromomeres in telocentric and bi-armed chromosomes demonstrates that it is not the centromeric, but rather the subtelomeric, regions that are involved in the correct partner recognition and selection.  相似文献   

6.
粘型小麦雄性不育系减数分裂特征及育性恢复研究   总被引:3,自引:0,他引:3  
王小利  张改生等 《西北植物学报》2001,21(5):832-838,T001
调查了粘型1B/1R和非1B/1R小麦雄性不育系,保持系及其F2的花粉母细胞减数分裂中期Ⅰ染色体联会情况、后期Ⅰ出现落后染色体的细胞频率以及末期Ⅱ含有微核的四分体的频率,结果表明:(1)粘果山羊细胞质对1B/1R型不育系减数分裂染色体配对水平具有特异性降低作用;(2)粘型1B/1R不育系减数分裂中期Ⅰ出现单价体细胞频率与后期Ⅰ出现落后染色体细胞的频率呈正相关,也与含微核的四分体频率呈正相关,而对应保持系则没有相关性;(3)粘果山羊草细胞质对非1B/1R不育系减数分裂过程影响不大,5个1B/1R不育系减数分裂过程中,3个时期染色体行为变异率的差异是特定的1B/1R核型与粘果山羊草细胞质互作的结果;(4)粘型1B/1R不育系杂交R2单株减数分裂3个时期染色体行为变异率与其恢复度成反比,这类不育系减数分裂中染色体行为不同步是其恢复不高且变异较大的一重要原因。  相似文献   

7.
A model of chromosome shift from mitosis to meiosis based on analysis of univalent behavior in meiotic anaphase I in the complete series of monosomic lines of Milturum 553 wheat cultivar is proposed. According to the model, chromosomes of homologous pairs change their pole orientation by two different mechanisms. Such co-orientation is achieved through segregation of initial pole zone in one haploid set and through synapsis of homologues in the other.  相似文献   

8.
Cytogenetic analysis of meiosis in the wheat--rye dimonosomics 1Rv-1A, 1Ron-1A, 2R-2D, 5R-5A, and 6R-6A was conducted. C-banding was used to study the segregation pattern of each of two univalent chromosomes during the first meiotic division. It has been shown that the division frequency of the centromeric regions of all rye chromosomes in the pair studied is significantly higher than in the wheat chromosomes. The ANOVA performed suggest that the plant genotype contributes significantly (at P = 0.05) to the behavior pattern of univalent chromosomes in meiosis. The data obtained demonstrate that the rye and wheat chromosomes studied are involved in genetic regulation of centromere division in meiotic anaphase I (AI). The presence of rye chromosome 2R and wheat chromosome 2D suppresses the division of centromeres of the sister chromatids in AI. Rye chromosomes 1Rv, 1Ron, 5R, and 6R induce equational division; however, rye chromosome 1Rv increases to a greater degree the frequency of equational division of wheat chromosome 1A as compared with chromosome 1Ron.  相似文献   

9.
The S genome of Aegilops speltoides is closely related to the B and G genomes of polyploid wheats. However, little work has been reported on the genetic relationships between the S-genome and B-genome chromosomes of polyploid wheat. Here, we report the isolation of a set of disomic substitutions (DS) of S-genome chromosomes for the B-genome chromosomes and their effects on gametophytic and sporophytic development. Ae. speltoides chromosomes were identified by their distinct C-banding and fluorescence in situ hybridization patterns with the Ae. speltoides-derived clone pGc1R-1. Although no large structural differences between S-genome and B-genome chromosomes exist, significant differences in gametophytic compensation were observed for chromosomes 1S, 3S, 5S and 6S. Similarly, chromosomes 1S, 2S, 4S, 5S and 6S affected certain aspects of sporophytic development in relation to spike morphology, fertility and meiotic pairing. The DS5S(5B) had disturbed meiosis with univalents/multivalents and suffered chromosome elimination in the germ tissues leading to haploid spikes in 50% of the plants. The effect of the Ph1 gene on meiosis is well known, and these results provide evidence for the role of Ph1 in the maintenance of polyploid genome integrity. These and other data are discussed in relation to the structural and functional differentiation of S- and B-genome chromosomes and the practical utility of the stocks in wheat improvement.  相似文献   

10.
Cytogenetic analysis of meiosis in the wheat-rye dimonosomics 1Rv-1A, 1Ron-1A, 2R-2D, 5R-5A, and 6R-6A was conducted. C-banding was used to study the segregation pattern of each of two univalent chromosomes during the first meiotic division. It has been shown that the division frequency of the centromeric regions of all rye chromosomes in the pair studied is significantly higher than in the wheat chromosomes. The ANOVA performed suggest that the plant genotype contributes significantly (at P = 0.05) to the behavior pattern of univalent chromosomes in meiosis. The data obtained demonstrate that the rye and wheat chromosomes studied are involved in genetic regulation of centromere division in meiotic anaphase I (AI). The presence of rye chromosome 2R and wheat chromosome 2D suppresses the division of centromeres of the sister chromatids in AI. Rye chromosomes 1Rv, 1Ron, 5R, and 6R induce equational division; however, rye chromosome 1Rv increases to a greater degree the frequency of equational division of wheat chromosome 1A as compared with chromosome 1Ron.  相似文献   

11.
E. Benavente  J. Orellana 《Genetica》1986,69(3):161-166
The chromosomes of the D genome of wheat and the genome R of rye can be distinguished at meiosis by C-banding in triticale-wheat hybrid plants. All members of both genomes almost exclusively formed univalents at metaphase I. However, at anaphase I the frequencies of equationally dividing chromosomes were higher for rye than for wheat chromosomes. The differential centromere behaviour at anaphase I is ascribed to differences in the time at which wheat and rye univalents are formed during the first meiotic prophase.  相似文献   

12.
Meiotic pairing constraints and the activity of sex chromosomes   总被引:5,自引:0,他引:5  
The state of activity and condensation of the sex chromosomes in gametocytes is frequently different from that found in somatic cells. For example, whereas the X chromosomes of XY males are euchromatic and active in somatic cells, they are usually condensed and inactive at the onset of meiosis; in the somatic cells of female mammals, one X chromosome is heterochromatic and inactive, but both X chromosomes are euchromatic and active early in meiosis. In species in which the female is the heterogametic sex (ZZ males and ZW females), the W chromosome, which is often seen as a condensed chromatin body in somatic cells, becomes euchromatic in early oocytes. We describe an hypothesis which can explain these changes in the activity and condensation of sex chromosomes in gametocytes. It is based on the fact that normal chromosome pairing seems to be essential for the survival of sex cells; chromosomal anomalies resulting in incomplete pairing during meiosis usually result in gametogenic loss. We argue that the changes seen in the sex chromosomes reflect the need to avoid pairing failure during meiosis. Pairing normally requires structural and conformational homology of the two chromosomes, but when the regions is avoided when these regions become heterochromatinized. This hypothesis provides an explanation for the changes found in gametocytes both in species with male heterogamety and those with female heterogamety. It also suggests possible reasons for the frequent origin of large supernumerary chromosomes from sex chromosomes, and for the reported lack of dosage compensation in species with female heterogamety.  相似文献   

13.
Meiosis is a specialised cell division that involves chromosome replication, two rounds of chromosome segregation and results in the formation of the gametes. Meiotic DNA replication generally precedes chromosome pairing, recombination and synapsis in sexually developing eukaryotes. In this work, replication has been studied during premeiosis and early meiosis in wheat using flow cytometry, which has allowed the quantification of the amount of DNA in wheat anther in each phase of the cell cycle during premeiosis and each stage of early meiosis. Flow cytometry has been revealed as a suitable and user-friendly tool to detect and quantify DNA replication during early meiosis in wheat. Chromosome replication was detected in wheat during premeiosis and early meiosis until the stage of pachytene, when chromosomes are associated in pairs to further recombine and correctly segregate in the gametes. In addition, the effect of the Ph1 locus, which controls chromosome pairing and affects replication in wheat, was also studied by flow cytometry. Here we showed that the Ph1 locus plays an important role on the length of meiotic DNA replication in wheat, particularly affecting the rate of replication during early meiosis in wheat.  相似文献   

14.
INTERSPECIFIC hybridization together with polyploidy has been an important force in the evolution of many of our graminaceous crop plants. Both wheat (Triticum aestivum) and oats (Avena sativa), for example, are natural allohexaploids derived in each case from the hybridization of three separate but related diploid species. The efforts of plant breeders to synthesize stable and fertile polyploids of this kind have, on the whole, been unsuccessful. The main reason for this is that whereas meiosis in natural allopolyploids such as wheat is extremely regular this is not the case with “synthetic” polyploids. In wheat precise control over pairing at meiosis is achieved by a gene or a cluster of genes on chromosome SB. The gene acts by restricting the pairing to homologous chromosomes with the result that only bivalents are formed, disjunction is regular and inheritance is completely disomic1,2. In the artificial polyploids at pachytene there is pairing between both homologous chromosomes (from the same species) and “corresponding” homoeologous chromosomes (from different species). The result is an extremely irregular metaphase 1 comprising multivalents and univalents as well as bivalents. Segregation is irregular and a certain degree of infertility is inevitable.  相似文献   

15.
At the onset of meiosis, chromosomes first decondense and then condense as the process of recognition and intimate pairing occurs between homologous chromosomes. We show here that okadaic acid, a drug known to induce chromosome condensation, can be introduced into wheat interspecific hybrids prior to meiosis to induce chromosome pairing. This pairing occurs in the presence of the Ph1 locus, which usually suppresses pairing of related chromosomes and which we show here delays condensation. Thus the timing of chromosome condensation during the onset of meiosis is an important factor in controlling chromosome pairing.  相似文献   

16.
Cytological and agronomic characteristics of a F2 population from Triticum aestivum L. x T. durum Desf. hybrids were analyzed plant by plant. Means of morphologic traits in the F2 population were similar to those of the low-value parent. On average, F2 hybrids had 36.54 chromosomes per plant, indicating that each gamete lost 2.73 chromosomes at meiosis of the F1 generation. More than half of plants had 36-39 chromosomes, so male gametes with 19-21 chromosomes seemed to be superior to the others. The distribution frequency of chromosomes in this study differed from that in a previous report, where a different tetraploid wheat was used. This shows that a different breeding strategy may need to be taken when exploiting a different tetraploid wheat. According to our results, some plants with 42 chromosomes, having all the wheat A, B and D chromosomes, would appear in the F3 population, which provides a chance to obtain stable bread wheat lines from the self-pollinated progenies. Alternatively, the desirable individuals of the F2 population were backcrossed to bread wheat, which is very useful and efficient for the improvement of bread wheat by exploiting desirable genes in durum wheat.  相似文献   

17.
During early meiosis, chromosomes pair via their telomeres and centromeres. This pairing induces a conformational change which propagates from these regions along each chromosome, making the chromatin of the partners accessible for intimate pairing. In the present study, we show by exploiting wheat–rye hybrids that the signal is initiated in both the presence and absence of either the Ph1 or Ph2 locus. However, the chromatin change only continues to propagate through rye telomeric heterochromatin when Ph1 is absent. This failure to propagate the chromatin change through the rye heterochromatin in the absence of Ph2 correlates with a subsequent lack of wheat–rye chromosome association at metaphase I.  相似文献   

18.
J M Vega  M Feldman 《Genetics》1998,148(3):1285-1294
The cytologically diploid-like meiotic behavior of hexaploid wheat (i.e., exclusive bivalent pairing of homologues) is largely controlled by the pairing homoeologous gene Ph1. This gene suppresses pairing between homoeologous (partially homologous) chromosomes of the three closely related genomes that compose the hexaploid wheat complement. It has been previously proposed that Ph1 regulates meiotic pairing by determining the pattern of premeiotic arrangement of homologous and homoeologous chromosomes. We therefore assume that Ph1 action may be targeted at the interaction of centromeres with spindle microtubules--an interaction that is critical for movement of chromosomes to their specific interphase positions. Using monosomic lines of common wheat, we studied the effect of this gene on types and rates of centromere division of univalents at meiosis. In the presence of the normal two doses of Ph1, the frequency of transverse breakage (misdivision) of the centromere of univalent chromosomes was high in both first and second meiotic divisions; whereas with zero dose of the gene, this frequency was drastically reduced. The results suggest that Ph1 is a trans-acting gene affecting centromere-microtubules interaction. The findings are discussed in the context of the effect of Ph1 on interphase chromosome arrangement.  相似文献   

19.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   

20.
Mammalian centromeric cohesin is protected from phosphorylation-dependent displacement in mitotic prophase by shugoshin-1 (Sgo1), while shugoshin-2 (Sgo2) protects cohesin from separase-dependent cleavage in meiosis I. In higher eukaryotes, progression and faithful execution of both mitosis and meiosis are controlled by the spindle assembly checkpoint, which delays anaphase onset until chromosomes have achieved proper attachment to microtubules. According to the so-called template model, Mad1-Mad2 complexes at unattached kinetochores instruct conformational change of soluble Mad2, thus catalysing Mad2 binding to its target Cdc20. Here, we show that human Sgo2, but not Sgo1, specifically interacts with Mad2 in a manner that strongly resembles the interactions of Mad2 with Mad1 or Cdc20. Sgo2 contains a Mad1/Cdc20-like Mad2-interaction motif and competes with Mad1 and Cdc20 for binding to Mad2. NMR and biochemical analyses show that shugoshin binding induces similar conformational changes in Mad2 as do Mad1 or Cdc20. Mad2 binding regulates fine-tuning of Sgo2's sub-centromeric localization. Mad2 binding is conserved in the only known Xenopus laevis shugoshin homologue and, compatible with a putative meiotic function, the interaction occurs in oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号