首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined protein phosphatase activities that are present during the cellular differentiation of Dictyostelium. Utilizing differential centrifugation, ion exchange, gel filtration, and concanavalin A affinity chromatography we found a number of distinct protein phosphatase activities. Three peaks of soluble Kemptide phosphatase activity and a very broad and heterogeneous soluble histone phosphatase activity were resolved by anion exchange chromatography. Histone phosphatase was associated with the particulate fraction, while Kemptide phosphatase was not. The protein phosphatase activities were able to dephosphorylate sites that had been phosphorylated by the cyclic AMP-dependent protein kinase. Therefore it is possible that their function in vivo may be to oppose the action of the cAMP-dependent protein kinase. In addition several paranitrophenyl phosphate phosphatase activities are shown to be largely separable from the protein phosphatases. An apparent heat-stable inhibitor of histone phosphatase is shown to be artifactual in that instead of interacting with the enzyme it acts by complexing with histone.  相似文献   

2.
Two kinds of neutral protease activities in lymph nodes from Lewis rats with acute experimental allergic encephalomyelitis (EAE) have been separated and partially purified and characterized. A soluble enzyme preparation enriched by gel filtration and ion-exchange chromatography hydrolyzes myelin basic protein, polylysine, and other basic proteins with an optimum pH at 6.0–6.5. It is inhibited byp-chloromercuribenzoate, and thus appears to be a mixture of thiol proteases. Another fraction containing proteolytic enzyme activity is strongly bound to the insoluble lymph node residue, and it also hydrolyzes myelin basic protein and histone, but not polylysine. It has a pH optimum above 7.5, is inhibited by phenylmethylsulfonyl fluoride, thus resembling elastase, but does not hydrolyze elastin-Congo red. The insoluble enzyme preparation hydrolyzes basic protein to 4–5 peptides in a pattern on polyacrylamide gels resembling that of the hydrolysis of basic protein by whole lymphocytes; the soluble enzyme mixture produces small fragments not retained on gels. Lymphocytes are a major component of the cells inflitrating the nervous system in experimental allergic encephalomyelitis, and neutral proteases contained in these cells may contribute to the degradation of myelin, especially of the basic protein.  相似文献   

3.
Endothelin converting enzyme activities in the soluble fraction of cultured bovine aortic endothelial cells were characterized. The two major endothelin converting enzyme activities were eluted from a hydrophobic chromatography column and the elution profile of the endothelin converting enzyme activities was the same as that of cathepsin D activities. These activities had a same pH optimum at pH 3.5 and were effectively inhibited by pepstatin A. Furthermore, anti-cathepsin D antiserum absorbed these activities as well as cathepsin D activity. Immunoblotting analysis using the antiserum showed the major active fractions have immunostainable components of identical molecular weights with cathepsin D. From these results, we concluded that the major endothelin converting activities in the soluble fraction of endothelial cells are due to cathepsin D. In addition to these cathepsin D activities, a minor endothelin converting enzyme activity with an optimum pH at 3.5 was found, which does not have angiotensin I generating (cathepsin D) activity from renin substrate and needs much higher concentrations of pepstatin A to inhibit the activity than cathepsin D.  相似文献   

4.
Biotinidase activities found in porcine brains (n = 3) were as follows: cerebrum, 4.4 +/- 0.2 pmol/min per milligram of protein; cerebellum, 7.6 +/- 0.3 pmol/min per milligram of protein; medulla, 2.9 +/- 0.3 pmol/min per milligram of protein. These values are relatively high compared with the activities in rat or guinea pig brains. Subcellular distribution of biotinidase was found mainly in the soluble cytoplasmic fraction (S3), i.e., in the supernatant of 0.32 M sucrose S2 solution after ultracentrifugation at 105,000g for 90 min. This is in contrast to the guinea pig livers, in which the subcellular distribution of biotinidase is mainly found in the microsomal fraction. After a seven-step purification (22,200-fold enrichment), porcine brain biotinidase is identified as a single polypeptide by the sodium dodecyl sulfate-polyacrylamide gel electrophoresis system, and its molecular weight is determined as 68,000 Da. The isoelectric point of the enzyme was 4.3. Sialidase treatment strongly suggests the presence of sialyl residues in this enzyme. Amino acid analysis indicates relatively high hydrophilicity and high content of glycine and serine. The enzyme activity is inhibited by organic mercurials, but not by diisopropylfluorophosphate. Abundant soluble biotinidase in brain cytoplasm may play an important role which has not been discovered yet.  相似文献   

5.
Photosynthetic gas exchange, activities of six key C4 cycle enzymes, amounts of soluble protein, chlorophyll, and DNA, and various leaf anatomical and structural features were measured in naturally occurring tetraploid and octaploid plants of the NAD-malic enzyme type C4 grass Panicum virgatum L. On a leaf area basis, the photosynthetic rate and concentrations of DNA, soluble protein, and chlorophyll were 40 to 50% higher, and enzyme activities 20 to 70% higher in the octaploid than in the tetraploid. Photosynthetic cells in the octaploid were only 17 to 19% larger in volume, yet contained 33 to 38% more chloroplasts than cells in the tetraploid. On a per cell basis the contents of DNA, soluble protein, and chlorophyll, activities of carboxylating photosynthetic enzymes, and carbon assimilation rate were all doubled in octaploid compared with tetraploid cells. Since cellular volume did not double with genome doubling, cellular constituents were more concentrated in the cells of the octaploid. The influences of polyploidy were balanced between mesophyll and bundle sheath cells since the changes in physical and biochemical parameters with ploidy level were similar in both cell types. We conclude that photosynthetic activity in these two polyploid genotypes of P. virgatum is determined by enzyme activities and concentrations of biochemical constituents, and that selection for smaller cell volume has led to higher photosynthetic rates per unit leaf area in the octaploid. The ratio of DNA content to cellular volume is a major factor determining the concentrations of gene products in cells. The number of chloroplasts, however, is controlled more by cellular volume than by the number of nuclear chromosomes.  相似文献   

6.
T. Lanaras  G. A. Codd 《Planta》1982,154(3):284-288
Ribulose 1,5-bisphosphate (RuBP) carboxylase is present in the cytoplasm and carboxysomes (polyhedral bodies) of the cyanobacterium Chlorogloeopsis fritschii. In vitro enzyme activities have been measured throughout photoautotrophic batch culture, together with RuBP carboxylase protein concentrations, determined by rocket immunoelectrophoresis. Enzyme activities and protein levels in the cytoplasmic and carboxysomal fractions varied in an apparently inverse manner during growth. The RuBP carboxylase activities per unit enzyme protein were maximal in late lag phase/early exponential phase for both cellular enzyme pools. Both rates per unit enzyme protein declined during exponential phase, cytoplasmic enzyme activity remaining consistently higher than that of the carboxysomal enzyme. Activities per unit cytoplasmic and carboxysomal enzyme protein showed very low, similar rates in late stationary phase and death phase. Dialysis experiments indicated that such changes were not due to interference in activity assays by soluble endogenous effectors. Major shifts in the subcellular distribution of RuBP carboxylase protein were found versus culture age, enzyme protein levels being predominantly carboxysomal in lag phase, mainly soluble in exponential phase and then mainly carboxysomal again in stationary/death phase. The data are discussed in terms of carboxysome function and the question of control of RuBP carboxylase synthesis in cyanobacteria.Abbreviations RuBP D-ribulose 1,5-bisphosphate - LTIB low Tris isolation buffer - HTIB high Tris isolation buffer - RIE rocket immunoelectrophoresis  相似文献   

7.
Two different species of murein transglycosylase in Escherichia coli.   总被引:14,自引:11,他引:3       下载免费PDF全文
We demonstrated that Escherichia coli murein transglycosylase exists in two forms. After mechanical disruption of the cells, one form was found in the soluble fraction and the other, in the cell envelope. The two enzymes differed with respect to molecular weight, isoelectric point, solubility in aqueous buffers, and to some extent in their requirements for maximal catalytic activity. The molecular weight of the membrane-bound transglycosylase (35,000) was half that of the soluble enzyme. Whether the high-molecular-weight soluble protein is a precursor of the membrane-bound enzyme species remains to be elucidated.  相似文献   

8.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

9.
The bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) consists of a set of cytoplasmic energy-coupling proteins and various integral membrane permeases/sugar phosphotransferases, each specific for a different sugar. We have conducted biochemical analyses of three PTS permeases (enzymes II), the glucose permease (IIGlc), the mannitol permease (IIMtl) and the mannose permease (IIMan). These enzymes each catalyse two vectorial/chemical reactions, sugar phosphorylation using phosphoenolpyruvate (PEP) as the phosphoryl donor, dependent on enzyme I, HPr and IIA as well as IIBC (the PEP reaction), and transphosphorylation using a sugar phosphate (glucose-6-P for IIGlc and IIMan; mannitol-1-P for IIMtl) as the phosphoryl donor, dependent only on IIBC (the TP reaction). When crude extracts of French-pressed or osmotically shocked Escherichia coli cells are centrifuged in an ultracentrifuge at high speed, 5-20% of the enzyme II activity remains in the high-speed supernatant, and passage through a gel filtration column gives two activity peaks, one in the void volume exhibiting high PEP-dependent and TP activities, and a second included peak with high PEP-dependent activity and high (IIMan), moderate (IIGlc) or negligible (IIMtl) TP activities. Both log and stationary phase cells exhibit comparable relative amounts of pelletable and soluble enzyme II activities, but long-term exposure of cells to chloramphenicol results in selective loss of the soluble fraction with retention of much of the pelleted activity concomitant with extensive protein degradation. Short-term exposure of cells to chloramphenicol results in increased activities in both fractions, possibly because of increased lipid association, with more activation in the soluble fraction than in the pelleted fraction. Western blot analyses show that the soluble IIGlc exhibits a subunit size of about 45 kDa, and all three soluble enzymes II elute from the gel filtration column with apparent molecular weights of 40-50 kDa. We propose that enzymes II of the PTS exist in two physically distinct forms in the E. coli cell, one tightly integrated into the membrane and one either soluble or loosely associated with the membrane. We also propose that the membrane-integrated enzymes II are largely dimeric, whereas the soluble enzymes II, retarded during passage through a gel filtration column, are largely monomeric.  相似文献   

10.
Dipeptidase and carboxypeptidase A activities were determined in cells and luminal contents of the fore-, mid-, and hind-midgut of Musca domestica larvae. Dipeptidase activity was found mainly in hind-midgut cells, whereas carboxy-peptidase activity was recovered in major amounts in both cells and in luminal contents of hind-midguts. The subcellular distribution of dipeptidase and part of the carboxypeptidase A activities is similar to that of a plasma membrane enzyme marker (aminopeptidase), suggesting that these activities are bound to the microvillar membranes. Soluble carboxypeptidase A seems to occur both bound to secretory vesicles and trapped in the cell glycocalyx. Based on density-gradient ultracentrifugation and thermal inactivation, there seems to be only one molecular species of each of the following enzymes (soluble in water or solubilized in Triton X-100): membrane-bound dipeptidase (pH optimum 8.0; Km 3.7 mM GlyLeu, Mr 111,000), soluble carboxypeptidase (pH optimum 8.0; Km 1.22 mM N-carbobenzoxy-glycyl-L-phenylalanine (ZGlyPhe), Mr45,000) and membrane-bound carboxypeptidase (pH optimum 7.5, Km 2.3 mM ZGlyPhe, Mr58,000). The results suggest that protein digestion is accomplished sequentially by luminal trypsin and luminal carboxypeptidase, by membrane-bound carboxypeptidase and aminopeptidase, and finally by membrane-bound dipeptidase.  相似文献   

11.
G0 human tonsillar B-lymphocytes were stimulated to divide by the polyclonal mitogen Staphylococcus Aureus Cowan strain 1 (SAC) and by the combined use of 12-O-tetradecanoyl phorbol-13-acetate (TPA) and the calcium ionophore ionomycin. The activities of protein kinase C, which requires Ca++ and phospholipid as co-factors, and a proteolytically cleaved form of this enzyme (protein kinase M), which is independent of calcium and phospholipid control, were determined in soluble and particulate fractions obtained from activated B cells. Treatment of G0 B cells with SAC or TPA together with ionomycin caused redistribution of protein kinase C from the soluble to the particulate fraction where the 80,000-Dalton protein kinase C was cleaved to give rise to a 50,000-Dalton form of the kinase which was also found in the cytoplasm. These data suggest that redistribution and proteolytic cleavage of protein kinase C are key signal transduction events in B cell mitogenesis.  相似文献   

12.
5'-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56 degrees C for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37 degrees C for 1 h and it was destroyed completely by heating at 100 degrees C for 30 min. When the heated (56 degrees C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-beta-D-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5'-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data suggest that the inhibiting activity is due to a protein(s) that is not a protease. The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35,000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. The present study suggest that the previously reported undetectability of 5'-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5'-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5'-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.  相似文献   

13.
The alga Chlorogonium elongatum was grown autotrophically or heterotrophically on acetate. Cells harvested in the logarithmic phase of growth were disrupted, and the whole homogenates were fractionated on sucrose gradients. Protein and enzyme determinations carried out on the fractions led to the following conclusions. Chloroplast fragments which represent the major portion of particulate protein in autotrophic cells migrate to density 1.17 g/cm3. In heterotrophic cells, mitochondria comprise most of the particulate protein, and these particles accumulate at density 1.19 g/cm3, as shown by a peak of cytochrome oxidase in this region. Part of the catalase and uricase, two marker enzymes for microbodies, were found in the soluble fractions, but 60% or more of these activities were recovered at density 1.225 g/cm3 from autotrophic cells. Electron micrographs showed that in this region there were microbodies with a diameter of 0.4 micrometer. The isolated microbodies contained no isocitrate lyase, a marker enzyme of glyoxysomes. This enzyme was completely soluble and therefore seems not to be associated with organelles in this organism.  相似文献   

14.
When CHO-K1 cells are cultivated under choline-deficient conditions, the specific activity of CDP-choline synthetase increases and conversely phospholipid-choline exchange enzyme activity decreases, whereas the other three known enzyme activities related to synthesis of phosphatidylcholine remain unchanged. The changes of the former two enzyme activities take place immediately after removal of choline from the medium. The altered activities readily revert to the control levels upon resupplementation of choline to the starved cell culture. The changes upon choline starvation are sensitive to cycloheximide, while the restoration processes are insensitive to the drug. The activity of CDP-choline synthetase in unstarved control cells is found in both the soluble and membrane fractions. The Km value of the enzyme in the soluble fraction for choline phosphate differs from that in the membrane fraction. Asolectin alters the Km value of the former to a value close to that of the latter and raises its Vmax value, whereas it hardly affects the Km and Vmax values of the latter. In choline-starved cells, the activity is exclusively found in the membrane fraction. The change in the subcellular distribution of the activity upon choline starvation is sensitive to cycloheximide. The altered subcellular distribution reverts to the initial status upon resupplementation of choline even in the presence of cycloheximide. The activity of the phospholipid-choline exchange enzyme is exclusively found in the membrane fraction for both starved and control cells. The properties of the enzyme are altered upon choline starvation with respect to the Vmax value for choline and the Km and Vmax values for Ca2+. These altered kinetic parameters are changed by egg yolk phosphatidylcholine so as to be indistinguishable from those in unstarved control cells. We discuss the mechanism of the alterations in the characters of both enzymes in response to choline starvation.  相似文献   

15.
The activities of four intracellular enzymes of collagen biosynthesis were assayed in freshly isolated rat peritoneal macrophages and mast cells and compared with the same enzymes in freshly isolated chick-embryo tendon cells. The macrophages were found to contain activities of all four enzymes, those of prolyl and lysyl hydroxylase being 7 and 12% respectively of those in the tendon cells when expressed per cell or 3 and 4% when expressed per unit of soluble cell protein. The corresponding values for hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase activities were about 82 and 68% or 32 and 24% respectively. When the macrophages were incubated in suspension with [(14)C]proline, they synthesized a small but significant amount of non-diffusible hydroxy[(14)C]proline. The synthesis per cell was only about 0.1% of that formed by the tendon cells, and its distribution between the cells and the medium also differed from that in the tendon cells. The hydroxy[(14)C]proline synthesized by the macrophages may be present in the Clq subcomponent of the complement, but its amount was too small to allow any characterization of the protein. All four enzyme activities, and in particular the two hydroxylysyl glycosyltransferase activities, seem to be present in macrophages in a large excess compared with the very low rate of synthesis of hydroxy-proline-containing polypeptide chains. The mast cell extract was found to inhibit all four enzyme activities, but even when corrected for this inhibition, prolyl and lysyl hydroxylase activities in the mast cells were less than 0.08% and the two hydroxylysyl glycosyltransferase activities less than 1% of those in the tendon cells. The intracellular enzyme pattern of collagen biosynthesis in the mast cells is thus completely or virtually completely repressed.  相似文献   

16.
The soluble enzyme, estradiol-17β dehydrogenase from human term placenta, appears to co-purify with a second soluble enzyme, 20α-hydroxysteroid dehydrogenase. The enzyme, which had been partially purified by affinity chromatrography, fractionated on a preparative electrophoresis gel to a homogeneous preparation containing both estradiol-17β dehydrogenase and 20α-hydroxysteroid dehydrogenase activities in a ratio of ~100:1. Analytical polyacrylamide disc-gels resolved this homogeneous preparation as a single band by both protein and activity staining techniques. Homogeneous enzyme inactivated and affinity-radioalkylated by 16α-[2′-su14C]bromoacetoxyprogesterone or 16α-[2′-su14C] bromoacetoxyestradiol 3-methyl ether, and when analyzed by SDS disc-gel electrophoresis, gave a single protein band which corresponded identically to the radioactivity peaks. These observations support the hypothesis that estradiol-17β dehydrogenase and 20α-hydroxysteroid dehydrogenase represent dual oxidoreductase activity in one enzyme.Preparative disc-gel electrophoresis, a technique which has not been previously adapted to purification of these human placental enzyme activities, was useful to rapidly (3 days) effect a 15-fold enrichment of the estradiol-17β dehydrogenase specific activity from “heat-treated cytosol”. Thus, laboratory-scale preparative disc-gel electrophoresis is useful for rapid, small-scale enrichment of this soluble enzyme.  相似文献   

17.
V Ambros  R F Pettersson  D Baltimore 《Cell》1978,15(4):1439-1446
The 5' terminal protein (VPg) on poliovirion RNA can be removed by cell-free extracts from a variety of uninfected cells. This soluble enzymatic activity is found in both nuclear and cytoplasmic extracts of heLa cells and is activated by Mg++. The enzyme activity cleaves the tyrosine-phosphate bond that links the protein to the RNA. In a partially purified form it has insufficient nonspecific protease or nuclease activity to account for its action. The existence of this enzyme implies that poliovirus RNA is translated in cell-free extracts in a form that lacks the 5' terminal protein. The role of this enzyme in the uninfected cell is not known.  相似文献   

18.
Ceramide glycanase (CGase) activities have been detected in different human tumor cells (colon, carcinoma Colo-205; neuroblastoma, IMR-32; breast cancer lines, SKBr3 and MCF7). However, the level of enzymatic activity is lower in these cells compared to that present in other mammalian tissues reported before (Basu, M., Kelly, P., Girzadas, M. A., Li, Z., and Basu, S. Methods Enzymol. (in press)). The majority of CGase activity was found in the 100,000g soluble supernatant fraction isolated from all these cell lines and tissues. Using the soluble enzyme, the requirement for optimum CGase activity was found to be consistent with previous observations found for rat and rabbit tissues (Basu, M., Dastgheib, S., Girzadas, M. A., O'Donnell, P. H., Westervelt, C. W., Li, Z., Inokuchi, J. I., and Basu, S. (1998) Acta Pol. Biochim. 42:327). The CGase activities from both Colo-205 and IMR-32 cells are optimum at a protein to detergent ratio of one. All the mammalian CGases, including human cancer cells, show an optimum pH between 5.5 and 5.8 in sodium acetate buffer. The CGase activities from cancer cells are found to be cation-independent; however, mercury, zinc, and copper ions seem to inhibit the enzyme activity substantially in both tumor cells lines. The mercury ion inhibition of CGase activities from all different sources indicates a possible structural homology in the CGase proteins.Radiolabeled substrates, labeled at the sphingosine double bond or at the 3-position of sphingosine without modifying double bond of sphingosine were used in this investigation. Both were active substrates with all enzyme preparations isolated from different cancer cells (apparent Km, 500 M for nLcOse5[3H-DT]Cer and 350 M for GgOse4[sph-3-3H]Cer with Colo-205 enzyme). Structural analogues of ceramide and sphingosine (L-PPMP, L-PDMP, alkylamines, and Tamoxifen) inhibited cancer cell CGase activities in vitro.  相似文献   

19.
Bovine and human epidermal cells were cultured on mitomycin C treated fibroblasts. The cells were carried through four passages and found to synthesize fibrous proteins and insoluble cell envelopes. Acid buffer soluble fibrous protein, prekeratin, and urea soluble fibrous protein were both identified and the latter was the major component in older cultures. Some of the prekeratin polypeptides of intact tissue were not found in cultured cells, but the ones that were present corresponded to those of whole tissue. X-ray diffraction, amino acid analysis and immunological techniques were used to establish that the polypeptides were keratins. The insoluble cell envelopes had a higher proline and 1/2 cystine content than the fibrous protein, similar to what is found in whole epidermis. Histidase, a characteristic enzyme marker of whole epidermis, was not observed in cultured cells. These studies indicate that differentiation occurs in cultured cells but it may not be as complete as in intact tissue.  相似文献   

20.
Abstract: Soluble and membrane fractions of bovine adrenal medulla contain several substrates for the Ca2+/ phospholipid-dependent and cyclic AMP-dependent protein kinases. The phosphorylation of soluble proteins (36 and 17.7 kilodaltons) and a membrane protein (22.5 kilo-daltons) showed an absolute requirement for the presence of both Ca2+ and phosphatidylserine; other substrates showed less stringent phosphorylation requirements and many of these proteins were specific for each of the protein kinases. The Ca2+/phospholipid-dependent phosphorylation was rapid, with effects seen as early as at 30 s of incubation. Measurement of enzyme activities with histone HI as an exogenous substrate demonstrated that the Ca2+/phospholipid-dependent protein kinase was equally distributed between the soluble and membrane fractions whereas the cyclic AMP-dependent enzyme was predominantly membrane-bound in adrenal medulla and chromaffin cells. The activity of the soluble Ca2+/phos-pholipid-dependent protein kinase of adrenal medulla was found to be about 50% of the enzyme level present in rat brain, a tissue previously shown to contain a very high enzyme activity. These results suggest a prominent role for the Ca2+/phospholipid-dependent protein kinase in chromaffin cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号