首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
M C Holley 《Tissue & cell》1985,17(3):321-334
Cilia projecting from the surfaces of highly contractile myoepithelia in the sea anemone Metridium senile maintain their basal orientation, and their ability to propel water, at different states of mesentery contraction, despite substantial changes of myoepithelial cell diameter and length. The ciliary basal apparatus in each monociliated myoepithelial cell is structurally well adapted to provide a stable anchorage for the cilium whilst compensating for these shape changes. It is composed of a distal centriole (basal body), a proximal centriole, a striated rootlet 2-3 micron long which is composed of a bundle of 4-6 nm filaments, and an arched rootlet, also striated, which is composed of a relatively loose bundle of 9-11 nm filaments. A single basal foot projects from the side of the distal centriole in the same direction as the path of the cilium during an effective-stroke; its tip is a focus for many microtubules that radiate outward in all directions toward the cell membrane. The arched rootlet forms a single arch in the cell apex, also in the same plane as the path of the cilium during an effective-stroke. The central axis of the basal apparatus, that is through the distal centriole and the striated rootlet, passes through the apex of the arch. The arched rootlet is apparently flexible so that it can increase or decrease its span as the cell increases or decreases in diameter. In pharnyx and siphonoglyph cells from M. senile, which do not undergo great changes in diameter or length, there is no arched rootlet, and the striated rootlet is much longer. The broad structural diversity of the metazoan ciliary basal apparatus must to a large extent be related to the diversity of the structural and mechanical properties of the cells in which it occurs.  相似文献   

2.
R Hard  C L Rieder 《Tissue & cell》1983,15(2):227-243
High voltage and conventional electron microscopy were used to investigate the ultrastructure of the ciliary apparatus in intact and in Triton-extracted, reactivated sheets of mucociliary epithelium isolated from newt lung. Each long (about 13 microns) ciliary axoneme terminates on a barrel-shaped basal body which is anchored in the apical cytoplasm by a variety of accessory structures. A basal foot is associated with the midpoint of each basal body and acts as a focal point for numerous microtubules (MTs). In many cases MTs can be seen to interconnect the feet of neighbouring basal bodies. Attached to the proximal end of each basal body and extending in a direction opposite the basal foot is a large 'ciliary root'. Each ciliary root is associated with a distinct bundle of 6-7 nm microfilaments which appear to stain with the specific F-actin probe NBD-phallacidin. A single 3-4 microns long striated rootlet inserts into each ciliary root and extends toward the cell nucleus through an extensive network of microfilaments. At the level of the basal plate 'Y-shaped' structures appear to connect each axonemal outer doublet MT to the plasma membrane. All of these ciliary accessory structures are present in the same relationship in Triton-extracted models. Their morphology and distribution indicates that they serve to anchor the cilia in the apical cytoplasm. In addition some of these structures appear to be responsible for maintaining the structural and functional integrity of the ciliary field in the demembranated and reactivated models.  相似文献   

3.
Only one sensory cell type has been observed within the glandular epithelium of the proboscis in the heteronemertine Riseriellus occultus. These bipolar cells are abundant and scattered singly throughout the proboscis length. The apical surface of each dendrite bears a single cilium enclosed by a ring of six to eight prominent microvilli. The cilium has the typical 9×2 + 2 axoneme arrangement and is equipped with a cross-striated vertical rootlet extending from the basal body. No accessory centriole or horizontal rootlet was observed. Large, modified microvilli (stereovilli) surrounding the cilium are joined together by a system of fine filaments derived from the glycocalyx. Each microvillus contains a bundle of actin-like filaments which anchor on the indented inner surface of a dense, apical ring situated beneath the level of the ciliary basal body. The tip of the cilium is expanded and modified to form a bulb-like structure which lies above the level where the surrounding microvilli terminate. In the region where the cilium emerges from the microvillar cone, the membrane of the microvillar apices makes contact with a corresponding portion of the ciliary membrane. At this level microvilli and cilium are apparently firmly linked by junctional systems resembling adherens junctions. The results suggest that these sensory cells may be mechanoreceptors. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Summary The basal apparatus of embryonic cells of the sea urchin Lytechinus pictus was examined by transmission electron microscopy and compared with the basal apparatus of other metazoan cells. The basal apparatus in these cells is associated with a specialized region of the apical cell surface that is encircled by a ring of microvilli. The basal apparatus includes several features that are common to all ciliated cells, including a basal body, basal foot, basal foot cap, and striated rootlet. However, a component not seen in the basal apparatus of other species has been observed in these cells. This structure is continuous with the striated rootlet, and its ultrastructure indicates that it is composed of the same components as the rootlet. This structure extends from the junction of the basal body and striated rootlet to the cortical region that surrounds the basal body. Based on its morphology and position, this structure is referred to as a striated side-arm. The striated side-arm is always aligned in the plane of the basal foot. Thus, both of these structures extend from the basal body in the plane of the effective stroke. It is suggested that the striated side-arm serves to stabilize the basal apparatus against force exerted by the cilium.  相似文献   

5.
Summary All cilia emerge from ciliary pits supported along their circumference by 22–24 dense rodlets that are connected by filaments to a surrounding sheath of endoplasmic reticulum. The proximal part of the basal body is provided with two short lateral rootlets and one long terminal rootlet, all associated with microtubules. The lateral rootlets are in turn connected by fine fibrous material to the dense supporting rodlets which follow the contour of the ciliary pit and extend along the ciliary membrane beyond the level of the basal plate where the central pair of microtubules originates. The proximal part of the basal body has fine fibrous connections to the endoplasmic reticulum while its distal portion is surrounded by nine curved sheets. The terminal cell contactions are by belt desmosomes that are accompanied by a bundle of microfilaments which encircle the apical region of the cell and insert at the cell membrane. Tight junctions are lacking. Endocytosis was demonstrated by the uptake of cationized ferritin. The structures associated with the ciliary pits are probably associated with the firm anchorage of the ciliary base since Trichoplax adheres to the substrate as it moves propelled by its ventral cilia. The marginal bundle of microfilaments may be involved in folding of the organism during feeding.  相似文献   

6.
Understanding poriferan choanocyte ultrastructure is crucial if we are to unravel the steps of a putative evolutionary transition between choanoflagellate protists and early metazoans. Surprisingly, some aspects of choanocyte cytology still remain little investigated. This study of choanocyte ultrastructure in the halisarcid demosponge Halisarca dujardini revealed a combination of minor and major distinctive traits, some of them unknown in Porifera so far. Most significant features were 1) an asymmetrical periflagellar sleeve, 2) a battery of specialized intercellular junctions at the lateral cell surface complemented with an array of lateral interdigitations between adjacent choanocytes that provides a particular sealing system of the choanoderm, and 3) a unique, unexpectedly complex, basal apparatus. The basal apparatus consists of a basal body provided with a small basal foot and an intricate transverse skeleton of microtubules. An accessory centriole, which is not perpendicular to the basal body, is about 45°. In addition, a system of short striated rootlets (periodicity = 50–60 nm) arises from the proximal edge of the basal body and runs longitudinally to contact the nuclear apex. This is the first flagellar rootlet system ever found in a choanocyte. The accessory centriole, the rootlet system, and the nuclear apex are all encircled by a large Golgi apparatus, adding another distinctive feature to the choanocyte cytology. The set of distinct features discovered in the choanocyte of H. dujardini indicates that the ultrastructure of the poriferan choanocyte may vary substantially between sponge groups. It is necessary to improve understanding of such variation, as the cytological features of choanocytes are often coded as characters both for formulation of hypotheses on the origin of animals and inference of phylogenetic relationships at the base of the metazoan tree. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Two kinds of cilia have been observed in the pharynx of Glossobalanus minutus Kowalewsky. From the present study, a ciliary specialization can be found in order to move a determinate substance, i.e. mucus or water. Mucus-moving cilia (type I cilia) have a single basal centriole and poorly developed ciliary rootlets. Their tips are rounded, bearing an inner, asymmetrical cap attached to some tubules. Water-moving cilia (type II cilia) are exclusively located at lateral epithelia of branchial bars, giving rise to the water current through the gills. They have two basal centrioles, proximal and distal, and a complex system of ciliary rootlets made up of a principal rootlet, a secondary or accessory rootlet and a 'fan' rootlet. The tips of type II cilia have a long process with some tubules inside. All basal structures are precisely orientated in order to assure a good coordination of ciliary beat. The possible functional significance of ciliary substructure is also discussed. From these observations a model for mucus and water currents through gill slits is postulated.  相似文献   

8.
ASPECTS OF CILIARY FINE STRUCTURE IN EUPLOTES PATELLA   总被引:9,自引:8,他引:1       下载免费PDF全文
1. The functional unity of cirri and membranelles can result structurally only from extensions of the ciliary membrane. 2. The pellicle is composed of an outer pellicular membrane and an inner cytoplasmic membrane. 3. The ciliary rootlets are composed of numerous filaments 120 A in diameter with central areas of low density. They have no periodic structure. 4. The ciliary membrane is a double-layered structure continuous with the pellicular membrane. The cilia show the typical arrangement of nine double, peripheral and two single, central fibrils. All fibrils pass into the basal region, the peripheral ones joining with the rootlet filaments, while the central fibrils from the extreme proximal position of the basal region turn back toward the pellicle and appear to unite just beneath the cytoplasmic membrane. 5. The cilia (300 mµ diameter) taper at their tips to a diameter at least as small as 50 mµ. At a diameter of about 150 mµ, the fibrils begin to show a reduction in number. 6. The central ciliary fibrils may determine the possible directions of ciliary beat. These fibrils show an intrafibrillar structure in their basal portion, which involves regularly spaced 40 A granules. 7. These observations on Euplotes, together with the other evidence cited, are consistent with the hypothesis that ciliary motion is produced by the contraction of the peripheral fibrils, while the central fibrils perhaps determine the plane in which the cilia can bend.  相似文献   

9.
The ultrastructure of the ciliary apparatus of multiciliated epidermal cells in larval and adult sipunculids is described and the phylogenetic implications discussed. The pelagosphera of Apionsoma misakianum has a dense cover of epidermal cilia on the head region. The cilia have a long, narrow distal part and two long ciliary rootlets, one rostrally and one vertically orientated. The adult Phascolion strombus has cilia on the nuchal organ and on the oral side of the tentacles. These cilia have a narrow distal part as in the A. misakianum larva, but the ciliary rootlets have a different structure. The first rootlet on the anterior face of the basal body is very short and small. The second, vertically orientated rootlet is long and relatively thick. The two ciliary rootlets present in the larval A. misakianum are similar to the basal metazoan type of ciliary apparatus of epidermal multiciliated cells and thus likely represent the plesiomorphic state. The minute first rootlet in the adult P. strombus is viewed as a consequence of a secondary reduction. No possible synapomorphic character with the phylogenetically troublesome Xenoturbella was found.  相似文献   

10.
The ciliated cells of tracheal epithelium were mechanically fragmented to remove the cytoplasmic soluble contents, and the apical zone was examined to clarify the three-dimensional structures of basal body and cytoskeletal filaments using freeze-fracture-etch approaches. The basal body was connected to the apical plasma membrane by definite laminae, formerly called alar sheets. The distal one-half of the basal foot was composed of several smooth-surfaced 12-nm fibrils. Intermediate filament networks extended to the lower half plane of the basal body, and enmeshed the basal body tightly by tiny 5- to 8-nm fibrils. Actin core bundles of microvilli also had tiny crosslinking fibrils. Some actin filaments were seen to run horizontally at the upper half plane of the basal body. Tracheal cilated cells also had circular actin filament bundles just inside the zonula adherens as many other epithelial cells. These cytoskeletal networks which enmeshed both basal bodies and core filaments of microvilli may function as a coordinator of ciliary beating.  相似文献   

11.
This report is an ultrastructural analysis of the organization of the isolated oral apparatus of Tetrahymena pyriformis, strain WH-6, syngen 1. Attention has been focused on the organization of microtubules and filaments in oral apparatus membranelles. Oral apparatus membranellar basal bodies were characterized with respect to structural differentiations at the distal and proximal ends. The distal region of membranellar basal bodies contains the basal plate, accessory microtubules and filaments. The proximal end contains a dense material from which emanate accessory microtubules and filaments. There are at least two possibly three different arrangements of accessory structures at the proximal end of membranellar basal bodies. All membranellar basal bodies appear to have a dense material at the proximal end from which filaments emanate. Some of these basal bodies have accessory microtubules and filaments emanating from this dense material. A possible third arrangement is represented by basal bodies which have lateral projections, from the proximal end, of accessory microtubules and filaments which constitute cross or peripheral connectives. There are at least three examples of direct associations between oral apparatus microtubules and filaments: (1) filaments which form links between basal body triplet microtubules, (2) filaments which link the material of the basal plate to internal basal body microtubules, (3) filaments which link together microtubule bundles from membranellar connectives. KCl extraction of the isolated oral apparatus resulted in the selective solubilization of oral apparatus basal bodies, remnants of ciliary axonemes and fused basal plates. Based on their response to KCl extraction two distinct sets of morphologically similar micro tubules can be identified: (a) microtubules which constitute the internal structure of basal bodies and ciliary axonemes, (b) microtubules which constitute the fiber connectives between basal bodies.  相似文献   

12.
Summary The ultrastructure of the apical plate of the free-swimming pilidium larva of Lineus bilineatus (Renier 1804) is described with particular reference to the multiciliated collar cells. In the multiciliary collar cells there are several, up to 12, cilia surrounded by a collar of about 20 microvilli extending from the cells' apical surface. The cilia have the typical 9+2 axoneme arrangement and are equipped with striated caudal rootlets extending from the basal bodies. No accessary centriole or rostral rootlet were observed. Microvilli surrounding the cilia are joined in a cylindrical manner by a mucus-like substance to form a collar. In comparison with many sensory receptor cells built on a collar cell plan the multiciliary collar cells of the pilidium larva apical plate are rather simple and unspecialized. In other pilidium larvae monociliated collar cells are found in the apical plate. The possible function and phylogenetic implications of multiciliated collar cells in Nemertini are briefly discussed.List of Abbreviations a axoneme - b basal body - c cilia or flagella - d desmosome - G Golgi apparatus - m mitochondria - mf microfilaments - mu mucus - mv microvilli - n nucleus - nt neurotubules - pm plasma membrane - r rootlet - ri ribosomes - v secretory vesicles  相似文献   

13.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

14.
The fine structure of the spermatozoon of Pennaria tiarella (coelenterata)   总被引:2,自引:0,他引:2  
Spermatozoa of the hydroid Pennaria tiarella were examined with the electron microscope. The anterior region is characterized by the presence of 30–40 membrane-bounded vesicles which lie anterior to the nucleus. These vesicles are apparently derived from the Golgi apparatus. The nucleus is conical in shape with a protrusion at the anterior end. Posteriorly it is indented by four radially arranged mitochondria. Lying within the fossa formed by the mitochondria are proximal and distal (filament forming) centrioles. The distal centriole is characterized by nine centriole satellite projections which emanate from its matrix. The tubules of the distal centriole are continuous with the alpha filaments of the tail. The tails are typical 9 + 2 flagella with 9 peripheral doublet (or alpha) filaments surrounding two central (or beta) filaments.  相似文献   

15.
Cilia formation is a multi-step process that starts with the docking of a vesicle at the distal part of the mother centriole. This step marks the conversion of the mother centriole into the basal body, from which axonemal microtubules extend to form the ciliary compartment. How vesicles are stably attached to the mother centriole to initiate ciliary membrane biogenesis is unknown. Here, we investigate the molecular role of the mother centriolar component Cep164 in ciliogenesis. We show that Cep164 was indispensable for the docking of vesicles at the mother centriole. Using biochemical and functional assays, we identified the components of the vesicular transport machinery, the GEF Rabin8 and the GTPase Rab8, as interacting partners of Cep164. We propose that Cep164 is targeted to the apical domain of the mother centriole to provide the molecular link between the mother centriole and the membrane biogenesis machinery that initiates cilia formation.  相似文献   

16.
Cilia and associated structures on the gill lamellae on the ctenidum of Chaetoderma nitidulum were studied. The gill cilia are very long and have a whip-like narrow portion distally, where only three microtubule doublets continue to the distal tip. In the transition zone between the cilium and the centriolar triplet section of the basal body there is a dense plate, an aggregation of granules and a ciliary necklace with four strands. Further down there is a short cross-striated basal foot and two conical cross-striated ciliary rootlets. The first rootlet is flattened and directed forward. It connects distally with the basal feet of other adjacent cilia. The second rootlet is rounded in cross-section and vertically directed. The epithelial structures of Chaetoderma show similarities with other Mollusca. We found no structural characters that could support the current hypothesis of a close relationship of Xenoturbella to the Mollusca.  相似文献   

17.
The kinetic apparatus, the acrosome and associated structures, and the manchette of the spermatid of the domestic chicken have been studied with the electron microscope. The basic structural features of the two centrioles do not change during spermiogenesis, but there is a change in orientation and length. The proximal centriole is situated in a groove at the edge of the nucleus and oriented normal to the long axis of the nucleus and at right angles to the elongate distal centriole. The tail filaments appear to originate from the distal centriole. The plasma membrane is invaginated along the tail filaments. A dense structure which appears at the deep reflection of the plasma membrane is identified as the ring. The fine structure of the ring has no resemblance to that of a centriole and there is no evidence that it is derived from or related to the centrioles. The tail of the spermatid contains nine peripheral pairs and one central pair of tubular filaments. The two members of each pair of peripheral filaments differ in density and in shape: one is dense and circular, and the other is light and semilunar in cross-section. The dense filaments have processes. A manchette consisting of fine tubules appears in the cytoplasm of the older spermatid along the nucleus, neck region, and proximal segment of the tail. The acrosome is spherical in young spermatids and becomes crescentic and, finally, U-shaped as spermiogenesis proceeds. A dense granule is observed in the cytoplasm between acrosome and nucleus. This granule later becomes a dense rod which is interpreted as the perforatorium.  相似文献   

18.
Electron microscopy was used to investigate primary cilia in quiescent 3T3 cells. As in the case of primary cilia of other cell types, their basal centriole was found to be a focal point of numerous cytoplasmic microtubules which terminate at the basal feet. There are also intermediate filaments which appear to converge at the basal centriole. Cross-striated fibers of microtubular diameter, reminiscent of striated rootlets of ordinary cilia, appear associated with the proximal end of the basal centriole. Usually less than nine cross-banded basal feet surround the basal centriole in a well-defined plane perpendicular to the centriolar axis. The ciliary shaft was found to be entirely enclosed in the cytoplasm of fully flattened cells. In rounded cells, it could be found extending to the outside of the cell. Periodic striations along the entire shaft were observed after preparing the cells in a special way. The tip of the shaft showed an electron-dense specialization. Several unusual forms of primary cilia were observed which were reminiscent of olfactory flagella or retinal rods.Using tubulin antibody for indirect immunofluorescence, a fluorescent rod is visible in the cells [18] which we demonstrate is identical with the primary cilium.  相似文献   

19.
The epidermis of Xenoturbella bocki Westblad was studied by scanning and transmission electron microscopy. Two cell types predominate in the epidermis: multiciliated epidermal cells and non-ciliated or monociliated gland cells. A conspicuous feature is the dense ciliary coverage and the numerous gland cell openings. Xenoturbella has a characteristic pattern of axonemal filament termination in the distal tips of their cilia. Each epidermal cilium has the typical 9 + 2 patten through the major part of its shaft. Near the tip there is a shelf at which doublets 4–7 terminate. Doublets 1, 2, 3, 8 and 9 continue into the thinner distal part of the cilium. A similar shelf in cilia is known only from the turbellarian orders Nemertodermatida and Acoela, and hence may be an apomorphic feature which indicates a close relationship between Xenoturbellida, Nemertoder-matida and Acoela. The basal body is provided with a so-called basal foot which has a cross-striated appearance and an expanded distal plate that seems to act as a microtubule organizing center. Approximately 15–25 microtubuli radiate from the endplate of the basal foot to the basal bodies caudally. The arrangement of basal foot and ciliary rootlets in Xenoturbella differs from that of Acoela and related orders in that there are two striated rootlets only (an anterior and a posterior one), rather than one main rootlet and two lateral rootlets.  相似文献   

20.
The morphogenesis of the outer segments of retinal rods was studied mainly in the kitten before the opening of the eye, and the probable sequence of the morphogenetic stages is deduced. Since the development of retinal rods is not synchronous, the deductions were based on observations of many single and serial sections. One centriole extends ciliary tubules of about 0.5 µ long, in the growing primitive cilium. Beyond this length, each ciliary tubule becomes a row of small vesicles (called "ciliary vesicles" in this paper), which penetrate into the distal region of the cilium. Where the ciliary vesicles establish contact with the plasma membrane of the distal region of the cilium, more or less deep infoldings of the plasma membrane are observed. In the distal region can be seen rows of tubular or vesicular structures. A few of these membranous structures are continuous with the bottoms of the infoldings. At the following stage, the infoldings disappear and the ciliary vesicles lose contact with the distal plasma membrane. Nonetheless, the formation of the tubular structures continues in the distal region of the primitive outer segment. The tubular structures appear to be transformed into the primitive rod sacs by sidewise enlargement. At a subsequent time, presumably, these primitive rod sacs flatten and are rearranged into a position perpendicular to the long axis of the outer segment. The detailed structure of the basal body of the connecting cilium was also studied by means of serial sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号