首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swimming bacteria sense and respond to chemical signals in their environment. Chemotaxis is the directed migration of a bacterial population toward increasing concentrations of a chemical that they perceive to be beneficial to their survival. Bacteria that are indigenous to groundwater environments exhibit chemotaxis toward chemical contaminants such as hydrocarbons, which they are also able to degrade. This phenomenon may facilitate bioremediation processes by bringing bacteria into closer proximity to these contaminants. A microfluidic device was assembled to study chemotaxis transverse to advective flow. Using a T-shaped channel design (T-sensor), two fluid streams were brought into contact by impinging flow. They then flowed adjacent to each other along a transparent channel. An advantage to this design is that it allows real-time visualization of bacterial distributions within the channel. Under laminar flow conditions a chemotactic driving force was created perpendicular to the direction of flow by diffusion of the chemical attractant from one input stream to the other. A comparison of the chemotactic band behavior in the absence and presence of flow showed that fluid velocity did not significantly impede chemotactic migration in the transverse direction.  相似文献   

2.
Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.  相似文献   

3.
Solid wastes from the oil-shale industry produce leachates containing toxic compounds such as heavy metals and persistent polycyclic aromatic hydrocarbons (PAH). The hazard to the environment represented by waste leachates depends not only on their chemical composition, but also on the mobility and bioavailability of toxic contaminants in soils. We evaluated the applicability of bioassays for toxicity assessment of the bioavailable fraction of heavy metals and PAH in soils, in experiments with samples of four different soil types (Rendzina, Brown pseudopodzolic, Typical brown, Sodpodzolic), the pH of which ranged from 6.2 to 7.2. The toxicity of the bioavailable fraction of the soil contaminants was assessed with the dehydrogenase enzyme activity assay, and with a Toxkit microbiotest with the crustacean, Thamnocephalus platyurus, after treatment of the soil samples with an artificial solution containing chromium (III), lead (II), copper (II), cadmium (II) and pyrene. The test results confirm those of earlier experiments, which characterised the sorption potential of investigated soils for the same compounds. Both tests turned out to be sufficiently sensitive, and hence can be recommended as effective and useful tools for the assessment of the bioavailable fraction of soil contaminants.  相似文献   

4.
A set of test methods for estimating the risk for human health (oral bioaccessibility tests) and groundwater (leaching tests) was applied to contaminated soils from three sites with different sources of contamination. The bioaccessible soil concentrations of the contaminants cadmium, lead, nickel, benzo(a)pyrene and dibenz(a,h)anthracene were considerably lower than the total concentrations. The leached concentrations of the polycyclic aromatic hydrocarbons, cadmium and nickel were below the EU drinking water and Danish groundwater criteria, whereas the leached lead concentrations were below the drinking water criteria but above the groundwater criteria. Based upon the test results, a risk assessment of the soils with respect to human health (oral exposure) and groundwater was established that reflected a reduced availability and mobility of PAH and heavy metals in the soils.  相似文献   

5.
Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.  相似文献   

6.
One of the largest environmental assessment programs in the United States was initiated in the early 1990s to determine the chemical characteristics of soil located within the planned alignment for the Central Artery (I-93) / Tunnel (I-90) (CA/T) Project in Boston, Massachusetts. The primary purpose of the program was to support management of the handling and disposal of over 17 million cubic yards of soil to be excavated during construction of the CA/T Project. As part of this work, more than 8,000 soil samples were collected from more than 2,600 soil borings and analyzed for a range of chemical contaminants, including volatile organic compounds, acid/base neutral compounds, total petroleum hydrocarbons, polychlorinated biphenyls, and heavy metals. The soils encountered during the investigations exhibited properties influenced by numerous anthropogenic activities. These activities, such as vehicular emissions, historic industrial/manufacturing operations, and waterfront filling with both building rubble and dredge spoils from Boston Harbor, resulted in soils primarily contaminated with petroleum hydrocarbons and metals. As a result of this program, an extensive database of the chemical constituents present in urban soils in downtown Boston was developed. These results were primarily used to delineate the limits of contaminated areas affecting the planned construction. In addition, the database has been used by the Project to support various soil management activities, as well as by the regulatory community in developing guidelines and criteria governing the management of contaminated soils in Massachusetts. This paper focuses on the various applications of this database throughout the course of the Project, and with the additional aim of stimulating potential future applications by both the regulatory and scientific communities.  相似文献   

7.
Hydrocarbon degradation in soils and methods for soil biotreatment   总被引:15,自引:0,他引:15  
The cleanup of soils and groundwater contaminated with hydrocarbons is of particular importance in minimizing the environmental impact of petroleum and petroleum products and in preventing contamination of potable water supplies. Consequently, there is a growing industry involved in the treatment of contaminated topsoils, subsoils, and groundwater. The biotreatment methodologies employed for decontamination are designed to enhance in situ degradation by the supply of oxygen, inorganic nutrients, and/or microbial inocula to the contaminated zone. This review considers the fate and effects of hydrocarbon contaminants in terrestrial environments, with particular reference to the factors that limit biodegradation rates. The potential efficiencies, advantages, and disadvantages of biotreatment techniques are discussed and the future research directions necessary for process development are considered.  相似文献   

8.
Bioremediation, the use of microorganisms to detoxify and degrade hazardous wastes, is an emerging in situ treatment technology for the remediation of contaminated aquifers and subsurface soils. This technology depends upon the alteration of the physical/chemical conditions in the subsurface environment to optimize microbiological activity. As such, successful bioremediation depends not only upon an understanding of microbial degradation processes, but also upon an understanding of the complex interactions that occur between the contaminants, the subsurface environment, and the indigenous microbial populations at each site. At present, these interactions are poorly understood. Site‐specific evaluation and design therefore are essential for bioremediation. In this paper, we review microbiological, hydrological, and geochemical factors that should be considered in evaluating the appropriateness of bioremediation for hazardous waste‐contaminated aquifers and subsurface soils.  相似文献   

9.
Contamination of soils and groundwater by chlorobenzene and benzene is a common problem at industrial sites worldwide. Since chemical remediation techniques are rarely completely effective, remnants of these contaminants often persist at levels that can still influence ecosystem health. We evaluated the potential of Pinus taeda and Eucalyptus urograndis to accelerate the removal of these compounds from sand/water systems using a completely randomized block greenhouse experiment with a no-plant control. At 2-day intervals, we added a solution containing both chlorobenzene and benzene with the same concentration of 50 mg L?1 (25 mg pot?1), and we monitored leachate concentrations daily. The planted treatments showed greater decrease of contaminants over time. In the absence of plants, the contaminant mass decreased 50–60% during each 2-day cycle; whereas, in the planted treatments the contaminant mass decreased 91–98%. At the end of the experiment the plant roots, leaves, and the sand-substrate each contained less than 1 mg kg?1 of contaminants, which is ~1% of the total contaminant mass added. In addition, we observed no tree mortality even at concentrations exceeding the aqueous solubility limit of both compounds. Our results suggest both trees are good candidates for remediating chlorobenzene and benzene in soils and groundwater.  相似文献   

10.
The soil vapor to indoor air exposure pathway is considered in a wide number of risk-based site management programs. In screening-level assessments of this exposure pathway, models are typically used to estimate the transport of vapors from either subsurface soils or groundwater to indoor air. Published studies indicate that the simple models used to evaluate this exposure pathway often over estimate the impact for aromatic hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xy-lene or BTEX), while showing reasonable agreement for estimates of chlorinated hydrocarbon impacts (e.g., PCE, TCE, DCE). Aerobic biodegradation of the petroleum hydrocarbons is most often attributed as the source of this disparity in the model/ data comparisons. This paper looks at the significance of aerobic biodegradation of aromatic hydrocarbons as part of the assessment of chemical vapor intrusion from soil or groundwater to indoor air. A review of relevant literature summarizing the available field data as well as various modeling approaches that include biodegradation is presented. This is followed by a simple modeling analysis that demonstrates the potential importance of biodegradation in the assessment of the soil vapor to indoor air exposure pathway. The paper concludes with brief discussions of other model considerations that are often not included in simple models but may have a significant impact on the intrusion of vapors into indoor air.  相似文献   

11.
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development.  相似文献   

12.
Fermentative and methanogenic bacteria have been found repeatedly as important members of microbial flora in anoxic zones of the subsurface—in pristine as well as in contaminated groundwater aquifers. These bacteria, which together with obligate proton reducers form complex methanogenic communities, are significant as decomposers of organic matter under conditions of exogenous electron acceptor depletion. Their metabolic activity has been demonstrated in laboratory microcosms derived from aquifer material, and also in the subsurface in situ. Methanogenic communities have been shown to transform numerous organic pollutants, or even to completely degrade these compounds with the production of carbon dioxide and methane. Depending on the chemical structure of the pollutant, such a compound can be used as an electron donor and a carbon/energy source for fermentative microorganisms (which is typically the case with highly reduced compounds); alternatively, a highly oxidized pollutant can be used as a potential electron acceptor or electron sink. This review addresses fermentative/methanogenic degradation of chlorinated and nonchlorinated aromatic hydrocarbons and phenols by subsurface microorganisms; for comparison, it briefly relates also other types of anaerobic transformations (under sulfate‐reducing, iron‐reducing, and denitrifying conditions). Furthermore, it outlines transformation pathways, those that are proposed as well as those that are already partially proved, for aromatic hydrocarbons and phenols under fermentative/methanogenic conditions; finally, it discusses the relevance of these processes to bioremediation of contaminated groundwater aquifers.  相似文献   

13.
At contaminated groundwater sites, poplar trees can be used to affect ground-water levels, flow directions, and ultimately total groundwater and contaminant flux to areas downgradient of the trees. The magnitude of the hydrologic changes can be monitored using fundamental concepts of groundwater hydrology, in addition to plant physiology-based approaches, and can be viewed as being almost independent of the contaminant released. The affect of poplar trees on the fate of groundwater contaminants, however, is contaminant dependent. Some petroleum hydrocarbons or chlorinated solvents may be mineralized or transformed to innocuous compounds by rhizospheric bacteria associated with the tree roots, mineralized or transformed by plant tissues in the transpiration stream or leaves after uptake, or passively volatilized and rapidly dispersed or oxidized in the atmosphere. These processes also can be monitored using a combination of physiological- or geochemical-based field or laboratory approaches. When combined, such hydrologic and contaminant monitoring approaches can result in a more accurate assessment of the use of poplar trees to meet regulatory goals at contaminated groundwater sites, verify that these goals continue to be met in the future, and ultimately lead to a consensus on how the performance of plant-based remedial strategies (phytoremediation) is to be assessed.  相似文献   

14.
Biodegradation of petroleum hydrocarbons in cold environments, including Alpine soils, is a result of indigenous cold-adapted microorganisms able to degrade these contaminants. In the present study, the prevalence of seven genotypes involved in the degradation of n-alkanes (Pseudomonas putida GPo1 alkB; Acinetobacter spp. alkM; Rhodococcus spp. alkB1, and Rhodococcus spp. alkB2), aromatic hydrocarbons (P. putida xylE), and polycyclic aromatic hydrocarbons (P. putida ndoB and Mycobacterium sp. strain PYR-1 nidA) was determined in 12 oil-contaminated (428 to 30,644 mg of total petroleum hydrocarbons [TPH]/kg of soil) and 8 pristine Alpine soils from Tyrol (Austria) by PCR hybridization analyses of total soil community DNA, using oligonucleotide primers and DNA probes specific for each genotype. The soils investigated were also analyzed for various physical, chemical, and microbiological parameters, and statistical correlations between all parameters were determined. Genotypes containing genes from gram-negative bacteria (P. putida alkB, xylE, and ndoB and Acinetobacter alkM) were detected to a significantly higher percentage in the contaminated (50 to 75%) than in the pristine (0 to 12.5%) soils, indicating that these organisms had been enriched in soils following contamination. There was a highly significant positive correlation (P < 0.001) between the level of contamination and the number of genotypes containing genes from P. putida and Acinetobacter sp. but no significant correlation between the TPH content and the number of genotypes containing genes from gram-positive bacteria (Rhodococcus alkB1 and alkB2 and Mycobacterium nidA). These genotypes were detected at a high frequency in both contaminated (41.7 to 75%) and pristine (37.5 to 50%) soils, indicating that they are already present in substantial numbers before a contamination event. No correlation was found between the prevalence of hydrocarbon-degradative genotypes and biological activities (respiration, fluorescein diacetate hydrolysis, lipase activity) or numbers of culturable hydrocarbon-degrading soil microorganisms; there also was no correlation between the numbers of hydrocarbon degraders and the contamination level. The measured biological activities showed significant positive correlation with each other, with the organic matter content, and partially with the TPH content and a significant negative correlation with the soil dry-mass content (P < 0.05 to 0.001).  相似文献   

15.
A total of 43 groundwater samples were collected from 9 multimonitoring wells at a petrochemical site, Baoding City, North China, from June 2008 to December 2009 to investigate the biogeochemical processes and/or bacterial conmmunity using both culture-dependent and -independent methods. The results showed that aromatic hydrocarbons and chlorinated hydrocarbons were the major pollutants in the groundwater. Denitrification and iron reduction might be the main biogeochemical processes in the aquifers at this site, which seemed to transform from denitrification-dominated to iron reduction-dominated in some sections. Denaturing gradient gel electrophoresis (DGGE) revealed that the dominant bacterial groups of the groundwater were related to some oil-degrading bacteria, which can grow under denitrifying, iron-reducing and sulfate-reducing anaerobic conditions. In some serious contaminated groundwater niches, there might be sulfur cycles, as sulfur oxidizer was also abundant, which was further confirmed by 16S rRNA gene cloning analysis. The operational taxonomic units (OTUs) that highly related to Pseudomonas sp., Hydrogenophaga sp., Sphingomonas sp., Ferribacterium sp. and Sulfuricurvum Kujiense etc. were predominant in the groundwater contaminated by chlorinated hydrocarbons (CHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX) and/or polycyclic aromatic hydrocarbons (PAHs), respectively. Biodiversity seemed to be undermined by oil contamination, and varied with seasons. The bacterial community in the contaminated groundwater was largely determined by the groundwater geochemistry.  相似文献   

16.
17.
A survey of soil gases associated with gasoline stations on theSwan Coastal Plain of Western Australia has shown that 20% leak detectable amountsof petroleum. The fates of volatile hydrocarbons in the vadose zone at one contaminatedsite, and dissolved hydrocarbons in groundwater at another site were followed in anumber of studies which are herein reviewed. Geochemical evidence from a plume ofhydrocarbon-contaminated groundwater has shown that sulfate reduction rapidly developedas the terminal electron accepting process. Toluene degradation but not benzene degradationwas linked to sulfate reduction. The sulfate-reducing bacteria isolated from the plumerepresented a new species, Desulfosporosinus meridiei. Strains of the speciesdo not mineralise 14C-toluene in pure culture. The addition of large numbersof cells and sulfate to microcosms did stimulate toluene mineralisation but not benzenemineralisation. Attempts to follow populations of sulfate-reducing bacteria byphospholipid signatures, or Desulfosporosinus meridiei by FISH in the plume were unsuccessful, but fluorescently-labeled polyclonal antibodies were successfully used.In the vadose zone at a different site, volatile hydrocarbons were consumed in thetop 0.5 m of the soil profile. The fastest measured rate of mineralisation of 14C-benzenein soils collected from the most active zone (6.5 mg kg-1 day-1) could accountfor the majority of the flux of hydrocarbon vapour towards the surface. The studiesconcluded that intrinsic remediation by subsurface microbial populations in groundwateron the Swan Coastal Plain can control transport of aromatic hydrocarbon contamination,except for the transport of benzene in groundwater. In the vadose zone, intrinsicremediation by the microbial populations in the soil profile can contain the transportof aromatic hydrocarbons, provided the physical transport of gases, inparticular oxygen from the atmosphere, is not impeded by structures.  相似文献   

18.
The objectives of this study were to (1) test a simple bioremediation treatment strategy in the Arctic and (2) examine the effect of fertilization on the degradation of aliphatic and aromatic hydrocarbons. The site is a coarse sand pad that once supported fuel storage tanks. Concentrations of diesel-range organics at the beginning of the study (July 1996) ranged from 250 to 860 mg/kg soil. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil samples were collected three times during the thaw season and analyzed for physical and chemical properties, microbial populations and activities, and concentrations of semivolatile hydrocarbons. Soil pH and soil-water potentials declined as a result of fertilizer application. Addition of fertilizer significantly increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also resulted in ∼50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not related to the amount of fertilizer added. Losses of aliphatic hydrocarbons were attributed to biotic processes, whereas losses of aromatic hydrocarbons likely were a result of both biotic and abiotic processes.  相似文献   

19.
Pollution of the environment with aromatic hydrocarbons, such as benzene, toluene, ethylbenzene and xylene (so-called BTEX) is often observed. The cleanup of these toxic compounds has gained much attention in the last decades. In situ bioremediation of aromatic hydrocarbons contaminated soils and groundwater by naturally occurring microorganisms or microorganisms that are introduced is possible. Anaerobic bioremediation is an attractive technology as these compounds are often present in the anoxic zones of the environment. The bottleneck in the application of anaerobic techniques is the lack of knowledge about the anaerobic biodegradation of benzene and the bacteria involved in anaerobic benzene degradation. Here, we review the existing knowledge on the degradation of benzene and other aromatic hydrocarbons by anaerobic bacteria, in particular the physiology and application, including results on the (per)chlorate stimulated degradation of these compounds, which is an interesting new alternative option for bioremediation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号