首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. JIMB-2008: BioEnergy—Special issue.  相似文献   

3.
The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3 d for hydrogen reactor and 12 d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15 d) under organic loading rate (OLR) 3 gVS/(L d). The two-stage process was still stable when the OLR was increased to 4.5 gVS/(L d), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. Microbial community analysis indicated that the dominant bacterial species were different in the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) and methane reactors (Clostridiumthermocellum-like species). The changes of substrates and HRT did not change the dominant species. The archaeal community structures in methane reactors were similar both in single- and two- stage reactors, with acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant species.  相似文献   

4.
In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470 mL-CH4/gVS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380 mL-CH4/gVS-added at the organic loading rate of 3.2 gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1 gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240 mL-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up-concentrated by evaporation to minimize its volume, and later be utilized as fertilizer.  相似文献   

5.
A co-culture of bacteria responsible for the conversion of butyrate to methane and CO2 was isolated from a cattle-waste treatment plant. The non-methanogenic partner of the co-culture was Syntrophomonas wolfei and the methanogenic partner was Methanobacterium formicicum. Although butyrate degradation occurred at pH<6.0 and below 45°C, methanogenesis was observed at pH>6.5 and above 40°C.  相似文献   

6.
This paper presents results from anaerobic digestion of cow manure and whey mix. A pilot scale anaerobic digester, 128 l in volume, has been developed, to operate under batch and fed-batch conditions. The versatile and unique characteristics of the instrument allowed testing the methane production directly in the farm. The digester performance was evaluated with two calibration tests, the main for a period of 56 days. The study test was divided into three phases, one for each type of feeding operation (batch, fed-batch, batch). The initial phase of digestion resulted in 57 l-CH4/kg-VS, the second phase had a yield of 86.6 l-CH4/kg-VS and the third one had a production of 67 l-CH4/kg-VS. The total methane yield was equal to 211.4 l-CH4/kg-VS. Using the obtained pilot plant results to a real scale diary production cycle, it was possible to evaluate an electricity production equal to 8.86 kwh per 1 t/d. The conducted tests did show that there is a good potential to the use of a cow manure and whey biomass mix for biogas production.  相似文献   

7.
Summary A novel anaerobic hybrid reactor (AHR) configuration incorporating floating support media for biomass immobilization and biogas recirculation for enhanced mixing was used for anaerobic digestion of dairy manure. No pretreatment or solid liquid separation was applied. The reactor was operated at high influent volatile solids (VS) and organic loading rates (OLR) of up to 9.87% and 7.30 g VS/l day, respectively. After 149 days of continuous operation the results revealed that a high amount (38.1 g VSS) of biomass was able to attach itself to the support medium being used. The investigated AHR configuration achieved COD, BOD, TS, and VS removal efficiencies of 48–63, 64–78, 55–65, and 59–68%, respectively, at a hydraulic retention time (HRT) of 15 days. The corresponding average methane production value obtained in this study was 0.191 l/g VS added.  相似文献   

8.
Studies on the performance of a laboratory scale upflow anaerobic solids removal (UASR) digester were carried out using sand-laden cow manure slurries having total solids (TS) concentration as 50 and 100 g/l. Hydraulic retention time (HRT) was maintained as 32.4 days, which resulted in the volatile solids (VS) loading rates of 1 and 1.64 g/l d. The UASR system was designed to remove sand from the manure slurry, while anaerobically digesting biodegradable solids inside a single reactor. To enhance the contact of microorganisms and substrate, the liquor from the top of the digester was recirculated through the bed of settled solids at its bottom. Volatile solids reduction through this process was observed to be 62% and 68% in the case of feed slurries having TS concentration as 50 and 100 g/l (referred in the text as 5% and 10% feed slurries), respectively. The methane production rates were observed to be 0.22 and 0.38 l/l d, while methane yield was 0.21 and 0.27 l CH4/g VS loaded, for 5% and 10% feed slurries, respectively. This indicates that the increase in the VS loading had a positive impact on methane production rate and methane yield. It would be of interest to study the performance of a UASR digester at higher solids loadings and with longer solids retention times. Nonetheless, the presented study showed that sand-laden manure slurries can be successfully digested in a UASR digester producing methane energy equivalent to 4 kW h per m3 of digester volume per day.  相似文献   

9.
The phylogenetic and functional diversity of syntrophic propionate-oxidizing bacteria (POB) present in an anaerobic digester was investigated by microautoradiography combined with fluorescent in situ hybridization (MAR–FISH) that can directly link 16S rRNA phylogeny with in situ metabolic function. The syntrophic POB community in the anaerobic digester sludge consisted of at least four phylogenetic groups: Syntrophobacter, uncultured short rod Smithella (Smithella sp. SR), uncultured long rod Smithella (Smithella sp. LR), and an unidentified group. The activities of these POB groups were dependent on the propionate concentrations. The uncultured Smithella sp. SR accounted for 52–62% of the total active POB under all the propionate concentrations tested (0.5–15 mM). In contrast, uncultured Smithella sp. LR was active only at lower propionate concentrations and became a dominant active POB at 0.5 mM of propionate. Syntrophobacter accounted for 16–31% of the total active POB above 2.5 mM propionate, whereas the active Syntrophobacter population became low (ca. 6%) at 0.5 mM of propionate. The anaerobic digester was operated in a fill and draw mode, resulting in periodical changes in propionate concentration ranging from 0 to 10 mM. These phylogenetically and functionally diverse, to some extent functionally redundant, active POB communities were dynamically responding to the periodical changes in propionate concentration.  相似文献   

10.
Here, we present the results of lab‐scale experiments conducted in a batch mode to determine the biogas yield of lipid‐rich waste and corn silage under the effect of stirring. Further semi‐continuous experiments were carried out for the lipid‐rich waste with/without stirring. Additionally, it was analyzed how the starter used for the batch experiment influences the digestion process. The results showed a significant stirring effect on the anaerobic digestion only when seed sludge from a biogas plant was used as a starter. In this case, the experiments without stirring yielded only about 50% of the expected biogas for the investigated substrates. The addition of manure slurry to the batch reactor as part of the starter improved the biogas production. The more diluted media in the reactor allowed a better contact between the bacteria and the substrates making stirring not necessary.  相似文献   

11.
Lin Y  Wang D  Li Q  Xiao M 《Bioresource technology》2011,102(4):3673-3678
This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2 °C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g−1 VSadded and the peak value of methane daily production was 0.5 m3/(m3 d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO3/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production.  相似文献   

12.
13.
This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 °C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery.  相似文献   

14.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g−1 total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).  相似文献   

15.
The objective of this study is to investigate the responses of methanogen populations to poultry waste addition by comparing the archaeal microbial populations in continuous anaerobic digesters with or without the addition of poultry waste as a co-substrate. Poultry waste was characterized as an organic/nitrogen-rich substrate for anaerobic digestion. Supplementing dilute dairy waste with poultry waste for anaerobic co-digestion to increase organic loading rate by 50% resulted in improved biogas production. Elevated ammonia derived from poultry waste did not lead to process inhibition at the organic loadings tested, demonstrating the feasibility of the anaerobic co-digestion of dairy and poultry wastes for improved treatment efficiency. The stability of the anaerobic co-digestion process was linked to the robust archaeal microbial community, which remained mostly unchanged in community structure following increases in organic loading and ammonia levels. Surprisingly, Crenarchaeota archaeal populations, instead of the Euryarchaeota methanogens, dominated the archaeal communities in the anaerobic digesters. The ecological functions of these abundant non-methanogen archaeal populations in anaerobic digestion remain to be identified.  相似文献   

16.
This study aimed to investigate potential methane production through anaerobic digestion of dairy manure and co‐digestion with maize silage. Two different anaerobic reactor configurations (single‐stage continuously stirred tank reactor [CSTR] and hybrid anaerobic digester) were used and biogas production performances for each reactor were compared. The HR was planned to enable phase separation in order to improve process stability and biogas production under higher total solids loadings (≥4%). The systems were tested under six different organic loading rates increased steadily from 1.1 to 5.4 g VS/L.d. The CSTR exhibited lower system stability and biomass conversion efficiency than the HR. The specific biogas production of the hybrid system was between 440 and 320 mL/gVS with 81–65% volatile solids (VS) destruction. The hybrid system provided 116% increase in specific biogas production and VS destruction improved by more than 14%. When MS was co‐digested together with dairy manure, specific biogas production rates increased about 1.2‐fold. Co‐digestion was more beneficial than mono‐material digestion. The hybrid system allowed for generating methane enriched biogas (>75% methane) by enabling phase separation in the reactor. It was observed that acidogenic conditions prevailed in the first two compartments and the following two segments as methanogenic conditions were observed. The pH of the acidogenic part ranged between 4.7 and 5.5 and the methanogenic part was between 6.8 and 7.2.  相似文献   

17.
Abstract

Optimization of pyranose-2-oxidase (P2O) production conditions from Trametes versicolor was carried out in shaking cultures containing glucose, malt, and yeast extracts; the optimum concentration values were found to be 1.5% glucose, 1.0% yeast extract, and 1.0% malt extract, pH 5.0, temperature, 26°C, and agitation rate 150 rpm. For the first time, P2O production was also carried out in a stirred tank reactor (STR) with 2.2 L working volume in the optimized medium composition, and biomass, P2O activity, protein, nitrogen and glucose concentrations were also monitored besides pH and dissolved oxygen (DO). In the STR, P2O activity peaked on day 9. Partial enzyme characterization occurred and optimum pH and temperature were detected as 7.0 and 37°C, respectively. K m value was found to be 1.009 mM.  相似文献   

18.
The feasibility of using synthetic kitchen waste (KW) and fat, oil, and grease (FOG) as co-substrates in the anaerobic digestion of waste activated sludge (WAS) was investigated using two series of biochemical methane potential (BMP) tests. Ranges of ideal substrate to inoculum (S/I) ratio were determined for the FOG (0.25-0.75) and KW (0.80-1.26) as single substrates in the first experiment. The second experiment, which estimated the methane production performances of FOG and KW as co-substrates for WAS co-digestion, was conducted based on the optimal parameters selected from the results of the first experiment. Results indicated that co-digestions with FOG and KW enhanced methane production from 117±2.02 mL/gTVS (with only WAS) to 418±13.7 mL/gTVS and 324±4.11 mL/gTVS, respectively. FOG exhibited more biogas production than KW as co-substrate. Non-linear regression results showed that co-substrate addition shortened the lag phases of organic biodegradation from 81.8 (with only WAS) to 28.3 h with FOG and 3.90 h with KW.  相似文献   

19.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

20.
By-products of white-rot fungi cultivations are valuable resources for the production of useful enzyme cocktails. These enzymes, which act synergistically to deconstruct lignocellulose polymers, can be recovered and potentially applied in industrial processes. This study investigated the application of processed by-products from Lentinula edodes cultivations in mesophilic and thermophilic anaerobic digestions of hay and straw. Untreated and mechanically treated hay and straw were investigated in biochemical methane potential assays with or without application of enzyme-containing materials. Biomasses, inocula and processed by-product were analyzed chemically and the degradation rate of lignocellulose polymers determined.In mesophilic conditions, all of the fungus-derived enzyme treatments increased the methane yield. A newly generated enzyme preparation significantly enhanced the methane yield of chopped hay and straw, and accelerated the rate of hemicellulose degradation. In general, the degree of cellulose degradation correlated with the methane yield. The novel enzyme preparation contains a larger variety of enzymes than is commonly found in biogas enzyme preparations and is thus an attractive candidate for significant process improvement. Our new investigation further shows that enzyme preparations of L. edodes have a high potential for catalytic activity in lignocellulose-rich systems without manure as co-substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号