首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tank bromeliads harbour aquatic microcosms with many endemic species among their leaves. We performed a set of experiments to determine which factors maintain the bromeliad aquatic fauna in isolation from neighbouring ponds. We cultivated three invertebrates species (an ostracod, an annelid and a cladoceran) from a pond surrounded by terrestrial bromeliads in Southeastern Brazil and introduced them inside cleaned bromeliads, using recipients with the same volume as controls. The pH, conductivity and organism densities were monitored in the bromeliad samples and controls for 41 days. The samples introduced inside the cleaned bromeliads showed a significant decrease in pH and conductivity compared to the controls. The pond organism populations introduced in the bromeliads presented a high extinction rate and a significant population decrease when compared to the ones introduced in the controls. We attributed the population decline experienced by the pond organisms to the oligotrophic conditions generated inside the tanks by the bromeliads due to the nutrient absorption. We suggest that the changes in water chemistry induced by the bromeliads could play an important role in isolating their microcosm communities from other freshwater systems. Other mechanisms that could produce the high rates of endemism in bromeliad fauna are discussed. Handling editor: K. Martens  相似文献   

2.
Tank-forming bromeliads, suspended in the rainforest canopy, possess foliage arranged in compact rosettes capable of long-term retention of rainwater. This large and unique aquatic habitat is inhabited by microorganisms involved in the important decomposition of impounded material. Moreover, these communities are likely influenced by environmental factors such as pH, oxygen, and light. Bacterial community composition and diversity was determined for the tanks of several bromeliad species (Aechmea and Werauhia) from northern Costa Rica, which span a range of parameters, including tank morphology and pH. These were compared with a nearby forest soil sample, an artificial tank (amber bottle), and a commercially available species (Aechmea). Bacterial community diversity, as measured by 16S rRNA analysis and tRFLP, showed a significant positive correlation with tank pH. A majority of 16S rRNA bacterial phylotypes found in association with acidic bromeliad tanks of pH < 5.1 were affiliated with the Alphaproteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes, and were similar to those found in acidic peat bogs, yet distinct from the underlying soil community. In contrast, bromeliads with tank pH > 5.3, including the commercial bromeliad with the highest pH (6.7), were dominated by Betaproteobacteria, Firmicutes, and Bacteroidetes. To empirically determine the effect of pH on bacterial community, the tank pH of a specimen of Aechmea was depressed, in the field, from 6.5 to 4.5, for 62 days. The resulting community changed predictably with decreased abundance of Betaproteobacteria and Firmicutes and a concomitant increase in Alphaproteobacteria and Acidobacteria. Collectively, these results suggest that bromeliad tanks provide important habitats for a diverse microbial community, distinct from the surrounding environment, which are influenced greatly by acid–base conditions. Additionally, total organic carbon (∼46%) and nitrogen (∼2%) of bromeliad-impounded sediment was elevated relative to soil and gene surveys confirmed the presence of both chitinases and nitrogenases, suggesting that bromeliad tanks may provide important habitats for microbes involved in the biological cycling of carbon and nitrogen in tropical forests.  相似文献   

3.
The phoretic behaviour of ostracods (Elpidium bromeliarum) andannelids (Dero superterrenus) that inhabit tank bromeliads was studied. Our previous field observations had shown that bromeliad ostracods can be found attached to the skin of amphibians and reptiles that move among bromeliads, probably allowing the ostracods to colonise new tanks. In this paper, we present the first record of bromeliad annelids found attached to frogs moving among bromeliads in the field. We have also enlarged the database on bromeliad ostracods engaged in phoretic association with terrestrial vertebrates in three locations in southeastern Brazil. In our laboratory experiments bromeliad annelids show a strong significant tendency to climb onto papers that had been in contact with frog skin when compared with control papers, indicating a kind of chemically oriented behaviour. Bromeliad ostracods, on the other hand, attached themselves to treated and untreated papers with same frequency. When brought into contact with various species of frogs and lizards, the bromeliad annelids and ostracods both presented preference to attach themselves to frogs, but the annelids showed a stronger preference to attach to frogs and to avoid attachment to lizards. Another experiment demonstrated that bromeliad annelids are much more prone to dehydration than are ostracods. We suggest that the chemically oriented behaviour presented by bromeliad annelids toward frogs could diminish the risk of death by dehydration during the transport among bromeliads due to the moist characteristic of frog skins.  相似文献   

4.
Evaluating the factors that regulate bacterial growth in natural ecosystems is a major goal of modern microbial ecology. Phytotelm bromeliads have been used as model ecosystems in aquatic ecology as they provide many independent replicates in a small area and often encompass a wide range of limnological conditions. However, as far as we know, there has been no attempt to evaluate the main regulatory factors of bacterial growth in these aquatic ecosystems. Here, we used field surveys to evaluate the main bottom-up factors that regulate bacterial growth in the accumulated water of tank bromeliads. Bacterial production, water temperature, water color, chlorophyll-a, and nutrient concentrations were determined for 147 different tank bromeliads in two different samplings. Bromeliad position and the season of sampling were also noted. Bacterial production was explained by ion ammonium concentration and water temperature, but the total variance explained was low (r 2 = 0.104). Sampling period and bromeliad position were included in additional models that gave empirical support for predicting bacterial production. Bromeliad water tanks are extremely variable aquatic ecosystems in space (among bromeliads) and time (environmental conditions can change within hours), and it is well known that bacterial production responds rapidly to environmental change. Therefore, we concluded that several factors could independently regulate bacterial growth in phytotelm bromeliads depending on the characteristics of each bromeliad, such as location, amount of detritus, and ambient nutrient concentrations. A clear bottom-up limitation pattern of bacterial production in tropical phytotelm bromeliads was not found. Handling editor: Luigi Naselli-Flores  相似文献   

5.
Bourguyia hamata females oviposit almost exclusively inside the rosette formed by the curled leaves of the epiphytic bromeliad Aechmea nudicaulis. We investigated whether the architecture of the individual bromeliads influences oviposition site selection by this harvestman species. We collected data on the presence of clutches inside bromeliads, rosette length, rosette slope in relation to tree trunks, and the amount of debris inside the rosette. Additionally, we measured the water volume inside the rosettes as well as the variation in the humidity inside and outside bromeliads with long and short rosettes. Longer rosettes were preferred as oviposition site possibly because they accumulate more water and maintain lower internal humidity variation than the external environment. Although the slope of the rosettes did not influence the occurrence of oviposition, the probability of debris accumulation inside the rosettes increased with their slope, and the frequency of clutches was greater in bromeliads with small amounts of debris. A field experiment showed that bromeliads with water inside the rosette were more frequently used as oviposition sites than bromeliads without water. In conclusion, females oviposit predominantly in bromeliads that accumulate more water and have small amounts of debris inside the rosettes, probably because these characteristics promote a more adequate microhabitat for egg development.  相似文献   

6.
7.
In several tropical and subtropical forests, plants of the understorey act as an ecological filter that differentially affects woody species regeneration. In convex sectors of the Schinopsis balansae (Anacardiaceae) forests of the Southeastern Chaco there are dense colonies of terrestrial bromeliads. These may influence forest regeneration by intercepting rain water and propagules in their tanks. Within colonies, the spatial distribution of bromeliads is clumped because their clonal growth leaves numerous internal gaps. In this study we describe the internal heterogeneity of three bromeliad colonies (plots) and analyze how this heterogeneity affects Acacia praecox regeneration (i.e. seedling recruitment and survival). In January 1996, we randomly placed three transects with 150 contiguous quadrats of 100 cm(2) in each plot. For each quadrat we recorded the type of floor cover (i.e. bromeliads, herbs, litter, or bare soil) and the presence of A. praecox seeds or seedlings. In July 1996 we relocated the transects and recorded seedling survival. Bromeliad colonies showed a high internal heterogeneity. Almost half of the 450 quadrats were covered by two terrestrial bromeliads. Aechmea distichantha was recorded in 81% of all quadrats with bromeliads, and Bromelia serra in the others. All quadrats with bromeliads were covered by litter. Half of them were occupied by the bases of bromeliads and the others were covered by their leaves. In contrast, where bromeliads were not present, soil surface was covered by litter in 83% and by herbaceous vegetation in 11% of the quadrats; very few quadrats were covered by bare soil. In January 1996, we recorded 127 seeds and 176 seedlings of A. praecox. Seed and seedling densities of A. praecox were similar in quadrats with and without bromeliads, but variability in seedling density of A. praecox was higher within than among plots. Seed density was higher in quadrats covered by bromeliad leaves than inside the tanks. Seedling survival of A. praecox was slightly higher in quadrats with bromeliads in only one of the three plots. No seedling survived inside the bromeliad tanks. Apparently. bromeliad colonies have no effect on seedling regeneration of A. praecox.  相似文献   

8.
We studied bromeliad selection by calling males of Phyllodytes melanomystax. The study site was a restinga environment in the northeastern state of Bahia, northeastern Brazil. We sampled 202 bromeliads, 101 with and 101 without calling males. We used multiple logistic regression analysis and Wald test to identify which of nine environmental variables investigated could explain the occurrence of calling males within bromeliads. The presence/absence of calling males in bromeliads was influenced by the number of bromeliads in a 2 m radius and the amount of debris inside the rosettes, while physical variables of bromeliads and the volume of stored water inside their rosettes had no influence. The mark-recapture procedure of P. melanomystax revealed site fidelity. This study is the first to explain the pattern of bromeliad selection by a species of the bromeliad-dwelling frog genus Phyllodytes.  相似文献   

9.
10.
Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa‐Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain dengue transmission during the dry season.  相似文献   

11.
1. A substantial fraction of the freshwater available in neotropical forests is impounded within the rosettes of bromeliads that form aquatic islands in a terrestrial matrix. The ecosystem functioning of bromeliads is known to be influenced by the composition of the contained community but it is not clear whether bromeliad food webs remain functionally similar against a background of variation in the understorey environment. 2. We considered a broad range of environmental conditions, including incident light and incoming litter, and quantified the distribution of a very wide range of freshwater organisms (from viruses to macroinvertebrates) to determine the factors that influence the functional structure of bromeliad food webs in samples taken from 171 tank‐bromeliads. 3. We observed a gradient of detritus‐based to algal‐based food webs from the understorey to the overstorey. Algae, rotifers and collector and predatory invertebrates dominated bromeliad food webs in exposed areas, whereas filter‐feeding insects had their highest densities in shaded forest areas. Viruses, bacteria and fungi showed no clear density patterns. Detritus decomposition is mainly due to microbial activity in understorey bromeliads where filter feeders are the main consumers of microbial and particulate organic matter (POM). Algal biomass may exceed bacterial biomass in sun‐exposed bromeliads where amounts of detritus were lower but functional diversity was highest. 4. Our results provide evidence that tank‐bromeliads, which grow in a broad range of ecological conditions, promote aquatic food web diversity in neotropical forests. Moreover, although bromeliad ecosystems have been categorised as detritus‐based systems in the literature, we show that algal production can support a non‐detrital food web in these systems.  相似文献   

12.
We tested whether interspecific competition from Aedes albopictus had measurable effects on A. aegypti at the typical numbers of larval mosquitoes found in cemetery vases in south Florida. We also tested whether the effect of interspecific competition from A. albopictus on A. aegypti differed between sites where A. aegypti either persists or went extinct following invasion by A. albopictus. Similar experiments manipulating numbers of A. albopictus in cemetery vases were conducted at three sites of A. aegypti persistence and three sites where A. aegypti was apparently extinct. The experiments were done using numbers of larvae that were determined by observed numbers of larvae for each site, and with resources (leaf detritus) that accumulated in experimental vases placed into each field site. In both the early rainy season (when number of mosquito larvae was low) and the late rainy season (when number of mosquito larvae was high), there was a significant effect of treatment on developmental progress of experimental A. aegypti. In the late rainy season, when numbers of larvae were high, there was also a significant effect of treatment on survivorship of A. aegypti. However, the competition treatment × site type (A. aegypti persists vs extinct) interaction was never significant, indicating that the competitive effect of A. albopictus on A. aegypti did not differ systematically between persistence versus extinction sites. Thus, although competition from A. albopictus is strong under field conditions at all sites, we find no evidence that variation in the impact of interspecific competition is associated with coexistence or exclusion. Interspecific competition among larvae is thus a viable explanation for exclusion or reduction of A. aegypti in south Florida, but variation in the persistence of A. aegypti following invasion does not seem to be primarily a product of variation in the conditions in the aquatic environments of cemetery vases.  相似文献   

13.
Psecas chapoda, a neotropical jumping spider strictly associated with the terrestrial bromeliad Bromelia balansae in cerrados and semi-deciduous forests in South America, effectively contributes to plant nutrition and growth. In this study, our goal was to investigate if spider density caused spatial variations in the strength of this spider–plant mutualism. We found a positive significant relationship between spider density and δ15N values for bromeliad leaves in different forest fragments. Open grassland Bromeliads were associated with spiders and had higher δ15N values compared to forest bromeliads. Although forest bromeliads had no association with spiders their total N concentrations were higher. These results suggest that bromeliad nutrition is likely more litter-based in forests and more spider-based in open grasslands. This study is one of the few to show nutrient provisioning and conditionality in a spider–plant system.  相似文献   

14.
We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ~10(2) to 10(4) cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web.  相似文献   

15.
The mycorrhizal status of epiphytic, rupicolous, and terrestrial bromeliad species from the Brazilian Atlantic Rain Forest has been examined. Roots of 13 species of bromeliads were analyzed for the presence of mycorrhizal structures such as arbuscules, hyphae, and vesicles as well as other fungal structures. Rhizosphere soil was sampled to identify arbuscular mycorrhizal fungal (AMF) species associated only with terrestrial bromeliad species. Most specimens collected were epiphytic bromeliads in the genera Aechmea, Bilbergia, Nidularium, Tillandsia, and Vriesea. Differentiating structures of AMF were found in only three species of bromeliads. The pattern of mycorrhizal colonization was mainly internal, and external mycelium and arbuscules were observed only in the terrestrial Nidularium procerum. Root endophytes with dark brown septate mycelium, thin external hyphae, and Rhizoctonia-like sclerotia were also detected in some root segments. A total of ten spore morphotypes were recovered from the rhizosphere of N. procerum, with Acaulospora mellea, A. foveata, and Glomus sp. being the most common species recovered. Our study demonstrated that most of the epiphytic species are not associated with AMF. We attribute this mainly to the exposed bare root conditions found in epiphytic bromeliads.  相似文献   

16.
During a study about bromeliad tadpoles (Scinax perpusillus), the ability of bromeliad ostracods (genus Elpidium) to pass unharmed through the tadpole gut was documented. Seven Elpidium were found alive inside a tadpole's digestive tract. Subsequent experiments demonstrated that Scinax tadpoles frequently ingest bromeliad ostracods, eliminating them unharmed in the faeces. Another laboratory experiment demonstrated these ostracods'ability to pass through a mammalian (mouse) gut alive. The consequences of this ability in ostracod ecology and evolution is discussed. Biotic and abiotic data from the bromeliads where the ostracods and tadpoles were collected are given.  相似文献   

17.
In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n = 30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of Abracteata, likely due to ant deposition of feces and other waste in these tanks.  相似文献   

18.
Although spiders are a very diverse group on vegetation, their associations with plants are poorly known. Some salticid species specifically use Bromeliaceae as host plants in some regions of South America. In this study, I report the geographic range of these spider‐bromeliad associations, and whether the spiders inhabit particular bromeliad species and vegetation types, as well as open areas or interior of forests. Nine salticid species were found to be associated with up to 23 bromeliad species in cerrados (savanna‐like vegetation), semideciduous and seasonal forests, coastal sand dune vegetation, restingas, inselbergs, highland forests, chacos, and rain forests at 47 localities in Brazil, Paraguay, Bolivia, and Argentina. Some species were typically specialists, inhabiting almost exclusively one bromeliad species over a large geographic range (e.g., Psecas chapoda on Bromelia balansae), whereas others were generalists, occurring on up to 7–8 bromeliad species (e.g., Psecas sp., Eustiromastix nativo, and Coryphasia sp. 1). The regional availability of bromeliad species among habitats may explain this pattern of host plant use. More jumping spiders were found on bromeliads in open areas than on bromeliads in the interior of forests. These results show that several jumping spider species may be strictly associated with the Bromeliaceae in the Neotropics. This is one of the few studies to show host‐specific associations for spiders on a particular plant type over a wide geographic range.  相似文献   

19.
Nectarivorous flower mites (Mesostigmata: Melicharidae) live mostly on hummingbird-pollinated plants in the New World. We observed Proctolaelaps sp. living on Neoregelia johannis (Bromeliaceae) in a coastal rain forest site in south-eastern Brazil. Flower anthesis of this bromeliad lasted a single day. We recorded mites moving into, feeding from, presumably mating and reproducing, and exiting bromeliad flowers within just a single day. We observed three ant species predating flower mites on bromeliads. The main visitor was the bumblebee Bombus morio, which always landed on the inflorescence to access nectar inside the bromeliad flowers. We found Proctolaelaps sp. mites on 47% of 38 bumblebees inspected, with each Bombus hosting 2 mites on average; only adults and mostly female mites (93%) usually found on the bumblebees’ gula region of the head. This is the first study to document nectarivorous flower mites living on a melittophilous host plant using bumblebees for phoretic dispersal.  相似文献   

20.
With the growing interest in small aquatic water bodies, especially as naturally replicated model systems for ecological research, aquatic invertebrate communities in phytotelmata are increasingly receiving attention these days. The recognition of the substantial contribution to the regional species pool of specialised species draws further attention to these small and often temporary habitats. The methods currently used for studying communities in some types of phytotelma, such as bromeliads, tend to be destructive, typically involving complete dissection of the plant. The expected increase in sampling intensity associated with the increasing interest in phytotelmata may result in a negative impact on plant populations in some areas, decreasing numbers in an unsustainable way, especially in locations with ongoing, intensive research. We therefore aimed to investigate whether less-destructive sampling methods can achieve sufficient data quality to allow their use as alternatives to complete plant dissection. We tested the effectiveness of three such methods in measuring the aquatic invertebrate communities in tank bromeliads (Tillandsia guatemalensis) in Cusuco National Park, Honduras. The three methods were pipetting the water out of the bromeliad, turning the bromeliad upside down and dissecting only the outer part of the plant (the oldest, often deteriorating leaves). Overall, we found that these methods were poor predictors of richness and abundance of the organisms in communities. However, we found big differences between taxonomic groups, depending in part on the ecology of the organisms, and we suggest that some less-destructive alternative methods may be appropriate for studying some specific groups (e.g. Culicidae). Based on these results and a rapid survey of the abundance of bromeliads in the national park, we question whether intensive, ongoing research into aquatic invertebrate communities in similar phytotelma populations is sustainable. From the point of view of conservation, alternative model systems need to be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号