首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.  相似文献   

2.
Imaging of glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked L-amino dipeptidase (NAALADase), may enable study of glutamatergic transmission, prostate cancer, and tumor neovasculature in vivo. Our goal was to develop a probe for GCP II for use with positron emission tomography (PET). Radiosynthesis of 11C-MeCys-C(O)-Glu or 11C-(S)-2-[3-((R)-1-carboxy-2-methylsulfanyl-ethyl)-ureido]-pentanedioic acid (11C-MCG), an asymmetric urea and potent (Ki = 1.9 nM) inhibitor of GCP II, was performed by C-11 methylation of the free thiol. Biodistribution of 11C-MCG was assayed in mice, and quantitative PET was performed in a baboon. 11C-MCG was obtained in 16% radiochemical yield at the end of synthesis with specific radioactivities over 167 GBq/mmol (4000 Ci/mmol) within 30 min after the end of bombardment. At 30 min postinjection, 11C-MCG showed 33.0 +/- 5.1%, 0.4 +/- 0.1%, and 1.1 +/- 0.2% ID/g in mouse kidney (target tissue), muscle, and blood, respectively. Little radioactivity gained access to the brain. Blockade with unlabeled MCG or 2-(phosphonomethyl)pentanedioic acid (PMPA), another potent inhibitor of GCP II, provided sevenfold and threefold reductions, respectively, in binding to target tissue. For PET, distribution volumes (DVs) were 1.38 then 0.87 pre- and postblocker (PMPA). Little metabolism of 11C-MCG occurred in the mouse or baboon. These results suggest that 11C-MCG may be useful for imaging GCP II in the periphery.  相似文献   

3.
Pyridoxine is used as a supplement for treating conditions such as vitamin deficiency as well as neurological disorders such as depression, epilepsy and autism. A significant neurologic complication of pyridoxine therapy is peripheral neuropathy thought to be a result of long-term and high dose usage. Although pyridoxine-induced neuropathy is transient and can remit after its withdrawal, the process of complete recovery can be slow. Glutamate carboxypeptidase II (GCP II) inhibition has been shown to improve symptoms of both chemotherapy- and diabetic-induced neuropathy. This study evaluated if GCP II inhibition could behaviorally and physiologically improve pyridoxine-induced neuropathy. In the current study, high doses of pyridoxine (400 mg/kg, twice a day for seven days) were used to induce neuropathy in rats. An orally bioavailable GCP II inhibitor, 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA), was administered daily at a dose of 30 mg/kg starting from the onset of pyridoxine injections. Body weight, motor coordination, heat sensitivity, electromyographical (EMG) parameters and nerve morphological features were monitored. The results show beneficial effects of GCP II inhibition including normalization of hot plate reaction time, foot fault improvements and increased open field distance travelled. H wave frequency, amplitude and latency as well as sensory nerve conduction velocity (SNCV) were also significantly improved by 2-MPPA. Lastly, GCP II inhibition resulted in morphological protection in the spinal cord and sensory fibers in the lumbar region dorsal root ganglia (DRG). In conclusion, inhibition of GCP II may be beneficial against the peripheral sensory neuropathy caused by pyridoxine.  相似文献   

4.
Matrix metalloproteinases (MMPs) are implicated in diseases such as arthritis and cancer. Among these enzymes, stromelysin-1 can also activate the proenzymes of other MMPs, making it an attractive target for pharmaceutical design. Isothermal titration calorimetry (ITC) was used to analyze the binding of three inhibitors to the stromelysin catalytic domain (SCD). One inhibitor (Galardin) uses a hydroxamic acid group (pK(a) congruent with 8.7) to bind the active site zinc; the others (PD180557 and PD166793) use a carboxylic acid group (pK(a) congruent with 4.7). Binding affinity increased dramatically as the pH was decreased over the range 5.5-7.5. Experiments carried out at pH 6.7 in several different buffers revealed that approximately one and two protons are transferred to the enzyme-inhibitor complexes for the hydroxamic and carboxylic acid inhibitors, respectively. This suggests that both classes of inhibitors bind in the protonated state, and that one amino acid residue of the enzyme also becomes protonated upon binding. Similar experiments carried out with the H224N mutant gave strong evidence that this residue is histidine 224. DeltaG, DeltaH, DeltaS, and DeltaC(p) were determined for the three inhibitors at pH 6.7, and DeltaC(p) was used to obtain estimates of the solvational, translational, and conformational components of the entropy term. The results suggest that: (1) a polar group at the P1 position can contribute a large favorable enthalpy, (2) a hydrophobic group at P2' can contribute a favorable entropy of desolvation, and (3) P1' substituents of certain sizes may trigger an entropically unfavorable conformational change in the enzyme upon binding. These findings illustrate the value of complete thermodynamic profiles generated by ITC in discovering binding interactions that might go undetected when relying on binding affinities alone.  相似文献   

5.
Vani T  Raghavendra AS 《Plant physiology》1994,105(4):1263-1268
The respiratory properties of guard cell protoplasts (GCP) were examined in comparison with those of mesophyll protoplasts (MCP) from the same leaves of pea (Pisum sativum L. cv Arkel). The rates of respiratory O2 uptake by GCP were extremely high (280 [mu]mol mg-1 Chl h-1) and were several times greater than those of MCP. On the other hand, the rates of photosynthetic O2 evolution by GCP were similar to those of MCP. Also on the basis of protoplast volume, the respiratory rates of GCP were higher: more than three times those of MCP. The enzymes of the tricarboxylic acid cycle, per unit protein or unit protoplast volume, had a 2- to 5-fold higher activity in GCP than in MCP, indicating an enrichment of mitochondrial activity in GCP relative to that in MCP. Respiratory inhibitors were used to assess the activity of the cytochrome (cyanide-sensitive) and alternative (cyanide-resistant) pathways in GCP and MCP. The inhibition of respiration by KCN or antimycin A was more in GCP than that in MCP. The marked inhibition of respiratory O2 uptake by salicylhydroxamic acid in the presence of KCN showed the presence of the cyanide-resistant pathway in GCP. The activity of the cyanide-resistant electron transport path constituted only one-third of total respiration in GCP but accounted for two-thirds of respiration in MCP. The alternative pathway was not completely engaged in GCP but reached its full capacity in MCP.  相似文献   

6.
Tallarida C  Song K  Raffa RB  Rawls SM 《Amino acids》2012,42(6):2521-2524
Glutamate carboxypeptidase II (GCPII) inhibitors are promising anti-glutamatergic and anti-addictive agents. We hypothesized that a GCPII inhibitor 2 (phosphonomethyl) pentanedioic acid (2-PMPA) would display anti-stereotypical activity in planarians. Experiments revealed that 2-PMPA displayed no overt behavioral activity by itself but attenuated stereotypical counts (C-shape hyperkinesias) elicited by four compounds (2-PMPA rank order potency: glutamate>NMDA>pilocarpine>cocaine). These data suggest GCPII inhibitors display broad-spectrum efficacy against behavioral activity produced by glutamatergic and non-glutamatergic compounds in an invertebrate assay.  相似文献   

7.
Excessive glutamate release is associated with neuronal damage. A new strategy for the treatment of neuronal injury involves inhibition of the neuropeptidase glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked acidic dipeptidase. GCP II is believed to mediate the hydrolysis of N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl-aspartate, and inhibition of NAAG peptidase activity (by GCP II and other peptidases) is neuroprotective. Mice were generated in which the Folh1 gene encoding GCP II was disrupted (Folh1-/- mice). No overt behavioral differences were apparent between Folh1-/- mice and wild-type littermates, with respect to their overall performance in locomotion, coordination, pain threshold, cognition and psychiatric behavioral paradigms. Morphological analysis of peripheral nerves, however, showed significantly smaller axons (reduced myelin sheaths and axon diameters) in sciatic nerves from Folh1-/- mice. Following sciatic nerve crush, Folh1-/- mice suffered less injury and recovered faster than wild-type littermates. In a model of ischemic injury, the Folh1-/- mice exhibited a significant reduction (p < 0.05) in infarct volume compared with their wild-type littermates when subjected to middle cerebral artery occlusion, a model of stroke. These findings support the hypothesis that GCP II inhibitors may represent a novel treatment for peripheral neuropathies as well as stroke.  相似文献   

8.
Two waterwheel-like dinuclear complexes [M(2)(PHA)(4)(H(2)O)(2)] (M = Cu(II) (1), Zn(II) (2); HPHA = phthal-hydroxamic acid) appended with four free hydroxamic acid groups, namely, free hydroxamic acid metal complexes (FHAMCs) have been synthesized and characterized. The crystal structure of complex 1 was determined by single crystal X-ray diffraction, which adopts the paddlewheel motif with four bidentate carboxylate ligands joining two Cu(II) ions. The relative cytotoxicities of compounds 1 and 2 against SMMC-7721 and HO-8910 cell lines are similar and more predominant than HPHA (IC(50): Cu(II)>Zn(II)>HPHA). The synergic effect of the bound water molecules, multiple free hydroxamic acid groups and dimetal active sites with bridging carboxylate may have significant impacts on their pharmacological activity. As the prototype for a new class of hydroxamic acid derivatives, the self-assembly of FHAMCs presents a promising new strategy in designing multiple hydroxamic acids with remarkable bioactivities.  相似文献   

9.
New inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with a pyrimidine-2,4,6-trione in place of the commonly used hydroxamic acid. These non-hydroxamate TACE inhibitors were developed by incorporating a 4-(2-methyl-4-quinolinylmethoxy)phenyl group, an optimized TACE selective P1' group. Several leads were identified with IC50 values around 100 nM in a porcine TACE assay and selective over MMP-1, -2, -9, -13, and aggrecanase.  相似文献   

10.
Histone deacetylases (HDACs) are a promising target for treating cancer and some other disorders. Herein, based on the structure of our previously reported tetrahydroisoquinoline-based hydroxamic acids, a novel series of tyrosine-based hydroxamic acid derivatives was designed and synthesized as HDACs inhibitors. Compared with tetrahydroisoquinoline-based hydroxamic acids, tyrosine-based hydroxamic acid derivatives exhibited more potent HDAC8 inhibitory activity. However, the antiproliferative activities and HeLa cell nuclear extract inhibition of several selected tyrosine-based hydroxamic acids were moderate.  相似文献   

11.
Structure-activity relationships are described for a series of succinyl hydroxamic acids 1a-o and their carboxylic acid analogues 2a-o as inhibitors of matrix metalloproteases MMP-3 and MMP-2. For this series (P1' = (CH2)3Ph, P2' = t-Bu) selectivity for the inhibition of MMP-2 was found to be strongly dependent on P3'.  相似文献   

12.
Hydroxamic acids have been reported to be potent and specific inhibitors of urease (EC 3.5.1.5) activity of plant and bacterial origin. The present investigation was performed on the inhibitory effect of hydroxamic acid derivatives of naturally occurring amino acids on the urease activity of the Jack Bean and the alimentary tracts of rats. Methionine-hydroxamic acid was the most powerful inhibitor (I50=3.9 X 10(-6) M) among nineteen alpha-aminoacyl hydroxamic acids. Phenylalanine-, serine-, alanine-, glycine-, histidine-, threonine-, leucine-, and arginine-hydroxamic acids followed, in order of decreasing inhibitory power. The inhibition proceeded with time at a comparable rate to fatty acyl hydroxamic acid inhibition. The I50 values of alpha-aminoacyl hydroxamic acids were found to be almost equal to those of the corresponding fatty acyl hydroxamic acids. This fact shows that the alpha-amino group did not affect inhibitory power. However, aspartic-beta-, lysine-, and glutamic-gamma-hydroxamic acids, in descending order, were much less inhibitory, probably due to the presence of a carboxyl or omega-amino group. Furthermore, the pH optimum of the inhibition shifted to lower pH in the presence of a carboxyl group, and to a higher pH in e presence of an amino group. The results suggest that the dissociation of an acidic or a basic group reduces the inhibitory power of hydroxamic acid. Hydroxamic acid inhibits urease activity with strict specificity, excpet for aspartic-beta-hydroxamic acid, which inhibited asparaginase competitively. Hydroxamic acid derivatives of amino acids inhibited not only the urease activity of the Jack Bean, but also that of the caecum and ileum parts of the rat intestine.  相似文献   

13.
14.
Three new peptidehydroxamic acids (l-alanyl-l-histidinehydroxamic acid, l-Ala-l-HisNHOH, l-alanyl-l-alanyl-l-histidinehydroxamic acid, l-Ala-l-Ala-l-HisNHOH and l-histidyl-l-alaninehydroxamic acid, l-His-l-AlaNHOH) were synthesized and their complexation with Cu(II), Ni(II) and Zn(II) were studied by pH-potentiometric, UV-Vis, CD, 1H NMR, EPR and ESI-MS methods. Each of the studied peptide derivatives involves one side-chain imidazole unit and the effect of this group on the metal binding of the hydroxamic moiety is evaluated in the paper. The obtained results are compared to those of the complexes of some histidine-containing di- or tripeptides and also to those of hydroxamic derivatives of aliphatic peptides.A competition between the hydroxamate and imidazole functions occurs in all systems, but the extent differs from metal to metal, from ligand to ligand and depends very much on the pH. The imidazole was found to play the most determinant role in the Cu(II) complexes, somewhat less in the Ni(II)-containing ones, while (except the case of l-Ala-l-HisNHOH) negligible role was found in the Zn(II)-complexes. Common feature of the Ni(II)- and especially Cu(II)-containing systems is that if an imidazole-N is displaced by a hydroxamate, imidazole-bridged di- and polynuclear complexes are formed.  相似文献   

15.
A series of pipecolic hydroxamate inhibitors of MMP-13 and aggrecanase was discovered based on screening known inhibitors of TNF-alpha converting enzyme (TACE). Potency versus aggrecanase was optimized by modification of the benzyloxyarylsulfonamide group. Incorporation of geminal alkyl substitution at the 3-position of the piperidine ring improved metabolic stability, presumably by increasing steric hindrance around the metabolically labile hydroxamic acid. This modification also resulted in dramatic improvement of aggrecanase activity with a slight reduction in selectivity versus MMP-1. Synthesis, structure activity relationships, and strategies to reduce metabolic clearance are described.  相似文献   

16.
Potent and selective bicyclic heteroaryl hydroxamic acid MMP and TACE inhibitors were synthesized by a novel convergent route. Selectivity and efficacy versus MMPs and TACE could be controlled by appropriate substitution on the scaffolds and by variation of the P1' group. Select compounds were found to be effective in in vivo models of arthritis.  相似文献   

17.
Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.  相似文献   

18.
A library of amide-linked derivatives of β-alanine hydroxamic acid were prepared (2-7) and the activity as inhibitors of Zn(II)-containing histone deacetylases (HDACs) determined in vitro against HDAC1 and the anti-proliferative activity determined in BE(2)-C neuroblastoma cells. The IC(50) values of the best-performing compounds (3-7) against HDAC1 ranged between 38 and 84μM. The least potent compound (2) inhibited a maximum of only 40% HDAC1 activity at 250μM. The anti-proliferative activity of 2-7 at 50μM against BE(2)-C neuroblastoma cells ranged between 57.0% and 88.6%. The structural similarity between the potent HDAC inhibitor trichostatin A (TSA, 1; HDAC1, IC(50) 12nM) and the present compounds (2-7) was high at the Zn(II) coordinating hydroxamic acid head group; and in selected compounds (2, 5), at the 4-(dimethylamino)phenyl tail. The significantly reduced potency of 2-7 relative to 1 underscores the rank importance of the linker region as part of the HDAC inhibitor pharmacophore. Molecular modeling of 1-7 using HDAC8 as the template suggested that the conformationally constrained 4'-methyl group of 1 may contribute to HDAC inhibitor potency through a sandwich-like interaction with a hydrophobic region containing F152 and F208; and that the absence of this group in 2-7 may reduce potency. The close proximity of the 5'-carbonyl oxygen atom in 2-7 to the sulfur atom of Met274 in HDAC8 or the corresponding isobutyl group of Leu274 in HDAC1 may attenuate potency through repulsive steric and dipole-dipole forces. In a unique resonance stabilized form of 2, this interaction could manifest as stronger ion-dipole repulsive forces, resulting in a further decrease in potency. This work suggests that resonance structures of HDAC inhibitors could modulate intermolecular interactions with HDAC targets, and potency.  相似文献   

19.
Bell JH  Pratt RF 《Biochemistry》2002,41(13):4329-4338
The class C beta-lactamase of Enterobacter cloacae P99 is competitively inhibited by low concentrations of 1:1 complexes of vanadate and hydroxamic acids. Structure-activity studies indicated that the hydroxamic acid functional group was essential to this inhibition. Both aryl and alkyl hydroxamic acids form inhibitory ternary complexes with vanadate and the enzyme, although, in certain cases of the latter, the inhibition may not be seen because of the low formation constants of the vanadate-hydroxamic acid complex. After all of the vanadate species present in solution had been taken into account, "real" K(i) values for the vanadate complexes could be determined. The K(i) value of the best of the inhibitors that were investigated, the 1:1 complex of vanadate with 4-nitrobenzohydroxamic acid, was 0.48 microM. Kinetics studies showed that the association and dissociation rate constants of this complex with the enzyme were 1.48 x 10(6) s(-1) M(-1) and 0.73 s(-1), respectively; the magnitude of the latter indicates covalent interaction of the complex with the enzyme. (51)V NMR and UV-vis spectra suggest that the structure of the vanadate complex bound to the enzyme may be very similar to that in solution. A (13)C NMR spectrum of the enzyme complex with 4-nitrobenzo[(13)C]hydroxamic acid and vanadate yields a coordination-induced shift (CIS) of 7.74 ppm. This is significantly larger than that of the vanadate complex in free solution (3.62 ppm), suggesting either, somewhat contrary to the (51)V and UV-vis spectra, greater interaction between vanadium and the hydroxamate carbonyl oxygen in the enzyme complex than in free solution or, more likely, polarization of the hydroxamate by interaction, e.g., hydrogen bonding, with the enzyme. Molecular modeling indicates that a pentacoordinated vanadate complex may well be able to snugly occupy the enzyme active site; Asn 152 is suitably placed to hydrogen bond to the hydroxamic acid oxygen atom. The experimental results are in accord with a model whereby the vanadate-hydroxamate-enzyme complex is a moderately good analogue of the transition state of the reaction of the beta-lactamase with phosphonate inhibitors.  相似文献   

20.
A series of hydroxamic acid derivatives bearing a cyclic amide/imide group as a linker and/or cap structure, prepared during our structural development studies based on thalidomide, showed class-selective potent histone deacetylase (HDAC)-inhibitory activity. Structure-activity relationship studies indicated that the steric character of the substituent introduced at the cyclic amide/imide nitrogen atom, the presence of the amide/imide carbonyl group, the hydroxamic acid structure, the shape of the linking group, and the distance between the zinc-binding hydroxamic acid group and the cap structure are all important for HDAC-inhibitory activity and class selectivity. A representative compound (30w) showed potent p21 promoter activity, comparable with that of trichostatin A (TSA), and its cytostatic activity against cells of the human prostate cell line LNCaP was more potent than that of the well-known HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号