首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The preimplantation development of the mammalian embryo encompasses a series of critical events: the transition from oocyte to embryo, the first cell divisions, the establishment of cellular contacts, the first lineage differentiation-all the first subtle steps toward a future body plan. Here, we use microarrays to explore gene activity during preimplantation development. We reveal robust and dynamic patterns of stage-specific gene activity that fall into two major phases, one up to the 2-cell stage (oocyte-to-embryo transition) and one after the 4-cell stage (cellular differentiation). The mouse oocyte and early embryo express components of multiple signaling pathways including those downstream of Wnt, BMP, and Notch, indicating that conserved regulators of cell fate and pattern formation are likely to function at the earliest embryonic stages. Overall, these data provide a detailed temporal profile of gene expression that reveals the richness of signaling processes in early mammalian development.  相似文献   

3.
Abstract. The starlet sea anemone, Nematostella vectensis Stephenson 1935, is a burrowing, estuarine species that has become a model organism for fundamental studies of cnidarian and metazoan development. During early oogenesis, oocytes appear in the basal region of the gastrodermis in the reproductive mesenteries and gradually bulge into the adjacent connective tissue space (mesoglea) where the majority of oocyte growth and vitellogenesis occurs. However, oocytes do not physically contact the cellular and amorphous matrix of the mesogleal compartment due to a thin, intervening basal lamina. Oocytes retain limited contact with the basal gastrodermal epithelium via groups of ultrastructurally modified gastrodermal cells called trophocytes. Trophocytes are monociliated accessory cells of somatic origin that collectively form a structure called the trophonema, a unique accessory cell/oocyte association not observed outside the Cnidaria. The trophonema consists of 50–60 trophocytes that maintain contact with <1% of the oocyte surface and forms a circular, bowel‐shaped depression on the luminal surface of the gastrodermis as they sink into the mesoglea with the oocyte. The oocyte remains highly polarized throughout oogenesis with the germinal vesicle positioned near the trophonema and presumably representing the future animal pole of the embryo. Contact between the trophonema and the oocyte is restricted to cell junctions connecting peripheral trophocytes and narrow extensions from the oocyte. Previous studies suggest that the trophonema plays a role in transport of extracellular digestive products from the gastrovascular cavity to the oocyte, and the ultrastructural features described in this study are consistent with that view. Vitellogenesis is described for the first time in a sea anemone. Yolk synthesis involves both autosynthetic and heterosynthetic processes including the biosynthetic activity of the Golgi complex and the uptake of extraoocytic yolk precursors via endocytosis, respectively.  相似文献   

4.
5.
With the introduction of multiple ovulation, embryo recovery and transfer techniques (MOET) plus embryo freeze-thaw methods in the early 1980s, the breeding industry has the tools in hand to increase the number of calves from donors of high genetic merit. In the early 1990s, the introduction of ovum pick-up followed by in vitro embryo production (OPU-IVP) opened up even greater possibilities. Using these technologies, we challenge biological mechanisms in reproduction. Where normally one oocyte per estrous cycle will develop to ovulation, now numerous other oocytes that otherwise would have degenerated are expected to develop into an embryo. Completion of oocyte growth and pre-maturation in vivo before final maturation both appear to be essential phases in order to obtain competence to develop into an embryo and finally a healthy offspring. In order to increase oocyte quality and quantity in embryo production technologies, current procedures focus primarily on improving the homogeneity of the population of oocytes with regard to growth and state of pre-maturation at the start of a treatment. In the case of MOET, dominant follicle removal (DFR) before superovulation treatment improves the number of viable embryos per session from 3.9 to 5.4 in cows but not in heifers and a prolonged period of follicle development obtained by preventing release of the endogenous LH surge increases the number of ova but not the number of viable embryos per session. In the case of OPU-IVP, the frequency of OPU clearly affects quantity and quality of the collected oocytes and FSH stimulation prior to OPU every 2 weeks resulted in 3.3 embryos per session. Analysis of 7,800 OPU sessions demonstrated that the oocyte yield is dependent on the team, in particular, the technician manipulating the ovaries. It is concluded that an increased understanding of the processes of oocyte growth, pre- and final maturation will help to improve the efficiency of embryo technologies. However, somewhere we will meet the limits dictated by nature.  相似文献   

6.
Kruip TA  Bevers MM  Kemp B 《Theriogenology》2000,53(2):611-618
In vitro embryo production (IVP) enhances the number of offspring from a single female and offers the possibility of accelerated genetic progress in animal husbandry. However, it also leads to a low but unacceptable percentage of anomalies in the offspring. The aim of this paper is to introduce the three speakers at this afternoon session who will speak about the demands of culture conditions and the endometrial environment to support normal embryonic development without effects on the embryonic genome. It will be argued that the in vitro conditions should mimic precisely the oviductal contributions to homeostatic mechanisms within the embryo. The further normal development can be guaranteed at synchrony in development of both endometrium and embryo. If that is not the case one can expect disturbances of gene expression, in particular of imprinted genes. However, it cannot be excluded that some processes might have started already in the cytoplasm of the oocyte. Since the oocyte was not planned to be a separate subject in this symposium, this introduction is also aimed to ask attention for the selection of cumulus-oocyte-complexes (COCs) and the conditions around oocyte maturation in vitro. The optimal quality of both the oocyte and maturation medium are prerequisites for an undisturbed cytoplasmic maturation. It has been argued that the exclusion of COCs from atretic follicles, the abjuration of the use of serum and high O2 tension in the gas phase might help to reduce the proportion anomalies in the offspring after synchronous transfers. In human IVF, in vivo matured oocytes are used with no great problems. But before IVP, including oocyte maturation in vitro (IVM) and a longer lasting embryo culture (IVC), will be introduced into the human assisted reproduction, it is important to think about the ins and outs of the potential causes for deviations.  相似文献   

7.
8.
9.
Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus‐oocyte‐complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase‐mediated dUTP nick‐End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short‐term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long‐term carry‐over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late‐stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3–0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.  相似文献   

10.
Maternal diabetes has been demonstrated to adversely affect preimplantation embryo development and pregnancy outcomes. Emerging evidence has implicated that these effects are associated with compromised oocyte competence. Several developmental defects during oocyte maturation in diabetic mice have been reported over past decades. Most recently, we further identified the structural, spatial and metabolic dysfunction of mitochondria in oocytes from diabetic mice, suggesting the impaired oocyte quality. These defects in the oocyte may be maternally transmitted to the embryo and then manifested later as developmental abnormalities in preimplantation embryo, congenital malformations, and even metabolic disease in the offspring. In this paper, we briefly review the effects of maternal diabetes on oocyte quality, with a particular emphasis on the mitochondrial dysfunction. The possible connection between dysfunctional oocyte mitochondria and reproductive failure of diabetic females, and the mechanism(s) by which maternal diabetes exerts its effects on the oocyte are also discussed.  相似文献   

11.
Dorsal ventral polarity and pattern formation in the Drosophila embryo   总被引:3,自引:0,他引:3  
The establishment of polarity along the dorsal-ventral axis of the Drosophila embryo requires the graded distribution of the dorsal morphogen. Several maternal genes are responsible for the formation of the gradient and their products act in an ordered series of events that begins during oogenesis and involves two different cell types, the oocyte and the follicle cells. The last step in the series results in selective nuclear localization of dorsal proteins, dorsal is thought to regulate the expression of zygotic genes in a concentration dependent way. The zygotic genes determine cell fates in specific regions of the embryo and direct other genes involved in the processes of differentiation.  相似文献   

12.
本文介绍了世界上和中国采用细胞核移植技术克隆动物的研究历史。综述了细胞核移植的程序、方法和影响因素,包括受体卵母细胞的去核、供体细胞核的制备、核移植、激活、受体细胞与供体细胞的融合、重组胚的体内和体外培养以及胚胎移植产生克隆动物。对克隆动物研究和应用前景进行了讨论。近期的研究结果表明,多代克隆可产生大量遗传性相同的动物,不久的将来克隆技术在商业上的应用将成为现实。  相似文献   

13.
Targeting proteins to specific domains within the cell is central to the generation of polarity, which underlies many processes including cell fate specification and pattern formation during development. The anteroposterior and dorsoventral axes of the Drosophila melanogaster embryo are determined by the activities of localized maternal gene products. At the posterior pole of the oocyte, Oskar directs the assembly of the pole plasm, and is thus responsible for formation of abdomen and germline in the embryo. Tight restriction of oskar activity is achieved by mRNA localization, localization-dependent translation, anchoring of the RNA and protein, and stabilization of Oskar at the posterior pole. Here we report that the type 1 regulatory subunit of cAMP-dependent protein kinase (Pka-R1) is crucial for the restriction of Oskar protein to the oocyte posterior. Mutations in PKA-R1 cause premature and ectopic accumulation of Oskar protein throughout the oocyte. This phenotype is due to misregulation of PKA catalytic subunit activity and is suppressed by reducing catalytic subunit gene dosage. These data demonstrate that PKA mediates the spatial restriction of Oskar for anteroposterior patterning of the Drosophila embryo and that control of PKA activity by PKA-R1 is crucial in this process.  相似文献   

14.
We followed the early embryogenesis of Aphelenchoides besseyi from fertilization to the 4-cell stage under Nomarski optics and examined the chromosome number and structure by DAPI staining. After an oocyte is fertilized by a sperm, the eggshell forms and the male and female pronuclei are reconstructed. The male pronucleus moves toward the female pronucleus, which is located at the center of the egg. They meet, rotate 90°, and fuse. The embryo then divides unequally into a larger anterior AB cell and a smaller posterior P(1) cell. The site of sperm entry into the oocyte seems to become the future anterior pole of the embryo, and thus the formation of an anterior-posterior axis formation is the same as that for Bursaphelenchus xylophilus, but opposite to that for Caenorhabditis elegans. From immunostaining, the fertilizing sperm appears to bring the centrosome into the oocyte. The chromosome structure during the pronuclear meeting as observed by DAPI staining suggests that a haploid sperm (N = 3) fertilizes a haploid oocyte (N = 3) to form a diploid embryo (2N = 6) and that all chromosomes appear to be of a similar size. Unlike C. elegans does, the P(1) cell first divides anterior-posteriorly followed by the AB anterior-posteriorly. These divisions produced the 4-cell stage embryo with 4 cells arranged in a linear fashion, again in contrast to that for C. elegans or B. xylophilus configured in a rhomboid shape.  相似文献   

15.
The present study was conducted to evaluate the influence of sperm:oocyte ratio during in vitro fertilization (IVF) of in vitro matured cumulus-intact oocytes on fertilization parameters and embryo development in pigs. In vitro matured oocytes surrounded by intact cumulus cells (COC) were inseminated with frozen-thawed spermatozoa at different sperm:oocyte ratios (2000:1, 3000:1, 4000:1, 6000:1, and 8000:1). Denuded oocytes inseminated with 2000 frozen-thawed spermatozoa:oocyte were the control group. A total of 2546 oocytes in five replicates were exposed to spermatozoa for 6 h and then cultured in embryo culture (EC) medium for 6 h (pronuclear formation) or 7 days (blastocyst formation: BF). The penetration rate increased in the COC groups with the sperm:oocyte ratio, reaching the highest rates with 8000:1 spermatozoa:oocyte (72.1 +/- 6.5%), similar to the control (73.5 +/- 3.5%). However, the monospermy was highest with the lower spermatozoa:oocyte rates (82.6-94.8%) and decreased drastically (P<0.05) in the COC group fertilized with 8000 sperm:oocyte (36%). The efficiency of fertilization (number of monospermic oocytes/total number of inseminated oocytes) showed no difference among the COC groups (20-30%) but they were significantly lower (P<0.007) than those obtained by the control group (43.7 +/- 2%). Embryo development was highest in the control group (58% for cleavage and 23% for BF) but not significantly different with the 6000 and 8000 sperm:oocyte COC groups (47 and 50% for cleavage and 19 and 17% for BF, respectively). These results indicate that the use of COC for IVF involves a drop in the efficiency of the fertilization and the necessity to increase the frozen-thawed sperm:oocyte ratio three to four times more to obtain similar embryo development to denuded oocytes.  相似文献   

16.
In human IVF procedures objective and reliable biomarkers of oocyte and embryo quality are needed in order to increase the use of single embryo transfer (SET) and thus prevent multiple pregnancies. During folliculogenesis there is an intense bi-directional communication between oocyte and follicular cells. For this reason gene expression profile of follicular cells could be an important indicator and biomarker of oocyte and embryo quality. The objective of this study was to identify gene expression signature(s) in human granulosa (GC) and cumulus (CC) cells predictive of successful embryo implantation and oocyte fertilization. Forty-one patients were included in the study and individual GC and CC samples were collected; oocytes were cultivated separately, allowing a correlation with IVF outcome and elective SET was performed. Gene expression analysis was performed using microarrays, followed by a quantitative real-time PCR validation. After statistical analysis of microarray data, there were no significantly differentially expressed genes (FDR<0,05) between non-fertilized and fertilized oocytes and non-implanted and implanted embryos in either of the cell type. Furthermore, the results of quantitative real-time PCR were in consent with microarray data as there were no significant differences in gene expression of genes selected for validation. In conclusion, we did not find biomarkers for prediction of oocyte fertilization and embryo implantation in IVF procedures in the present study.  相似文献   

17.
Somatic cell nuclear transfer (SCNT) technology has become a powerful tool for reproductive biology to preserve and propagate valuable genetics for livestock. Embryo production through SCNT involves enucleation of the oocyte and insertion of a somatic donor cell into the oocyte. These procedures lead to a few small openings on the zona pellucida that may elevate risk of viral infection for the produced SCNT embryos. The oocytes used for SCNT are mainly obtained from abattoirs where viral contamination is almost inevitable. Therefore, a systematic evaluation of risk of disease transmission through SCNT embryo production is necessary prior large scale implementation of this technology in the livestock industry. The objective of the current study was to evaluate the risk of disease transmission via SCNT embryo production and transfer by testing for the presence of porcine reproductive and respiratory syndrome virus (PRRSV) throughout the process of SCNT embryo production. The presence of PRRSV in each step of SCNT embryo production, from donor cells to pre-implantation SCNT embryo culture, was carefully examined using a real-time PCR assay with a sensitivity of five copies per-reaction. All 114 donor cell lines derived from pig skin tissue over a period of 7 years in our facility tested negative for PRRSV. Out of the 68 pooled follicular fluid samples collected from 736 ovaries, only four (5.9%) were positive indicating a small amount of viral molecule present in the oocyte donor population. All 801 Day 7 SCNT embryos produced in four separate trials and over 11,571 washed oocytes obtained in 67 batches over 10 months tested negative. These oocytes were collected from multiple abattoirs processing animals from areas with high density of pig population and correspond to a donor population of over 5828 individuals. These results indicate that the oocytes from abattoirs were free of PRRSV infection and therefore could be safely used for in vitro embryo production. Additionally, the established SCNT embryo production system, including donor cell testing, oocytes decontamination, and pathogen free embryo reconstruction and culturing, bears no risk of PRRSV transmission.  相似文献   

18.
Spatial control of mRNA translation can generate cellular asymmetries and functional specialization of polarized cells like neurons. A requirement for the translational repressor Nanos (Nos) in the Drosophila larval peripheral nervous system (PNS) implicates translational control in dendrite morphogenesis [1]. Nos was first identified by its requirement in the posterior of the early embryo for abdomen formation [2]. Nos synthesis is targeted to the posterior pole of the oocyte and early embryo through translational repression of unlocalized nos mRNA coupled with translational activation of nos mRNA localized at the posterior pole [3, 4]. Abolishment of nos localization prevents abdominal development, whereas translational derepression of unlocalized nos mRNA suppresses head/thorax development, emphasizing the importance of spatial regulation of nos mRNA [3, 5]. Loss and overexpression of Nos affect dendrite branching complexity in class IV dendritic arborization (da) neurons, suggesting that nos also might be regulated in these larval sensory neurons [1]. Here, we show that localization and translational control of nos mRNA are essential for da neuron morphogenesis. RNA-protein interactions that regulate nos translation in the oocyte and early embryo also regulate nos in the PNS. Live imaging of nos mRNA shows that the cis-acting signal responsible for posterior localization in the oocyte/embryo mediates localization to the processes of class IV da neurons but suggests a different transport mechanism. Targeting of nos mRNA to the processes of da neurons may reflect a local requirement for Nos protein in dendritic translational control.  相似文献   

19.
卵母细胞成熟和受精是动物生殖过程的核心环节。细胞骨架是遍布于卵母细胞胞质中的一种复杂的蛋白质纤维网络,研究表明,卵母细胞成熟和受精过程中伴随着广泛的胞质骨架重组。哺乳动物卵母细胞和早期胚胎中细胞骨架具有其独特的分布和功能,使卵母细胞和胚胎呈现出不同的变化特点。微丝、微管的分布变化与卵母细胞成熟和受精中遗传物质的重组密切相关。近年来,对哺乳动物不同物种间卵母细胞和胚胎中细胞骨架成分的研究取得了很大的进展,结合这些研究成果,对哺乳动物卵母细胞成熟和受精过程中细胞骨架的重组、分布和作用进行了介绍。同时,对多种信号转导途径参与卵母细胞成熟和受精中细胞骨架系统的调控也作了探讨。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号