首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficacies of trans-cinnamaldehyde (TC) and eugenol (EG) for reducing Salmonella enterica serovar Enteritidis colonization in broiler chickens were investigated. In three experiments for each compound, 1-day-old chicks (n = 75/experiment) were randomly assigned to five treatment groups (n = 15/treatment group): negative control (-ve S. Enteritidis, -ve TC, or EG), compound control (-ve S. Enteritidis, +ve 0.75% [vol/wt] TC or 1% [vol/wt] EG), positive control (+ve S. Enteritidis, -ve TC, or EG), low-dose treatment (+ve S. Enteritidis, +ve 0.5% TC, or 0.75% EG), and high-dose treatment (+ve S. Enteritidis, +ve 0.75% TC, or 1% EG). On day 0, birds were tested for the presence of any inherent Salmonella (n = 5/experiment). On day 8, birds were inoculated with ~8.0 log(10) CFU S. Enteritidis, and cecal colonization by S. Enteritidis was ascertained (n = 10 chicks/experiment) after 24 h (day 9). Six birds from each treatment group were euthanized on days 7 and 10 after inoculation, and cecal S. Enteritidis numbers were determined. TC at 0.5 or 0.75% and EG at 0.75 or 1% consistently reduced (P < 0.05) S. Enteritidis in the cecum (≥3 log(10) CFU/g) after 10 days of infection in all experiments. Feed intake and body weight were not different for TC treatments (P > 0.05); however, EG supplementation led to significantly lower (P < 0.05) body weights. Follow-up in vitro experiments revealed that the subinhibitory concentrations (SICs, the concentrations that did not inhibit Salmonella growth) of TC and EG reduced the motility and invasive abilities of S. Enteritidis and downregulated expression of the motility genes flhC and motA and invasion genes hilA, hilD, and invF. The results suggest that supplementation with TC and EG through feed can reduce S. Enteritidis colonization in chickens.  相似文献   

2.
3.
4.
AIMS: To develop a multiplex PCR assay for the detection of Salmonella enterica serovar Enteritidis in human faeces. METHODS AND RESULTS: A total of 54 Salmonella strains representing 19 serovars and non-Salmonella strains representing 11 different genera were used. Five primer pairs were employed in the assay. Three of them targeted to the genes hilA, spvA and invA that encode virulence-associated factors. A fourth primer pair amplified a fragment of a unique sequence within S. enterica serovar Enteritidis genomes. An internal amplification control (a fragment of a conservative sequence within the 16S rRNA genes) was targeted by a fifth primer pair. The assay produced two or three amplicons from the invA, hilA and 16S rRNA genes for 19 Salmonella serovars. All Salmonella and non-Salmonella strains yielded a band of an internal amplification control. For S. enterica serovar Typhimurium, four products (the fourth from the spvA gene), and for S. enterica serovar Enteritidis five amplicons (the fifth from the sdf gene) were observed. S. enterica serovar Enteritidis was cultured from three of 71 rectal swabs from diarrhoeal patients. Five specific amplicons were generated with the multiplex PCR assay only from culture-positive faecal samples. CONCLUSION: The multiplex PCR assay specifically detects S. enterica serovar Enteritidis. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a novel multiplex PCR assay, which contains an internal amplification control and enables concurrent survey for Salmonella virulence genes.  相似文献   

5.
hilA gene promoter, component of the Salmonella Pathogenicity Island 1, has been found in Salmonella serovar Typhimurium, being important for the regulation of type III secretion apparatus genes. We detected hilA gene sequences in Salmonella serovars Typhi, Enteritidis, Choleraesuis, Paratyphi A and B, and Pullorum, by polymerase chain reaction (PCR) and hybridization techniques. The primers to carry out PCR were designed according to hilA sequence. A low stringency hybridization with the probe pVV441 (hilA open-reading-frame plasmid) was carried out. To find hilA gene sequences in other Salmonella sp. suggest that these serovars could have similar sequences of this kind of virulence genes.  相似文献   

6.
7.
8.
9.
The ability of Salmonella enterica serovar Typhimurium to cause disease depends upon the co-ordinated expression of many genes located around the Salmonella chromosome. Specific pathogenicity loci, termed Salmonella pathogenicity islands, have been shown to be crucial for the invasion and survival of Salmonella within host cells. Salmonella pathogenicity island 1 (SPI-1) harbours the genes required for the stimulation of Salmonella uptake across the intestinal epithelia of the infected host. Regulation of SPI-1 genes is complex, as invasion gene expression responds to a number of different signals, presumably signals similar to those found within the environment of the intestinal tract. As a result of our continued studies of SPI-1 gene regulation, we have discovered that the nucleoid-binding protein Fis plays a pivotal role in the expression of HilA and InvF, two activators of SPI-1 genes. A S. typhimurium fis mutant demonstrates a two- to threefold reduction in hilA:Tn5lacZY and a 10-fold reduction in invF:Tn5lacZY expression, as well as a 50-fold decreased ability to invade HEp-2 tissue culture cells. This decreased expression of hilA and invF resulted in an altered secreted invasion protein profile in the fis mutant. Furthermore, the virulence of a S. typhimurium fis mutant is attenuated 100-fold when administered orally, but has wild-type virulence when administered intraperitoneally. Expression of hilA:Tn5lacZY and invF:Tn5lacZY in the fis mutant could be restored by introducing a plasmid containing the S. typhimurium fis gene or a plasmid containing hilD, a gene encoding an AraC-like regulator of Salmonella invasion genes.  相似文献   

10.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

11.
Salmonella enterica serovar Enteritidis is the predominant serovar associated with salmonellosis worldwide, which is in part due to its ability to contaminate the internal contents of the hen's egg. It has been shown that S. enterica serovar Enteritidis has an unusual tropism for the avian reproductive tract and an ability to persist in the oviduct and ovary. Factors allowing S. enterica serovar Enteritidis strains to contaminate eggs could be a specific interaction with the oviduct tissue, leading to persisting oviduct colonization. In vivo expression technology, a promoter-trap strategy, was used to identify genes expressed during oviduct colonization and egg contamination with S. enterica serovar Enteritidis. A total of 25 clones with in vivo-induced promoters were isolated from the oviduct tissue and from laid eggs. Among the 25 clones, 7 were isolated from both the oviducts and the eggs. DNA sequencing of the cloned promoters revealed that genes involved in amino acid and nucleic acid metabolism, motility, cell wall integrity, and stress responses were highly expressed in the reproductive tract tissues of laying hens.  相似文献   

12.
13.
14.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

15.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

16.
Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.  相似文献   

17.
18.
Salmonella enterica serovar Enteritidis is often transmitted into the human food supply through eggs of hens that appear healthy. This pathogen became far more prevalent in poultry following eradication of the fowl pathogen S. enterica serovar Gallinarum in the mid-20th century. To investigate whether changes in serovar Enteritidis gene content contributed to this increased prevalence, and to evaluate genetic heterogeneity within the serovar, comparative genomic hybridization was performed on eight 60-year-old and nineteen 10- to 20-year-old serovar Enteritidis strains from various hosts, using a Salmonella-specific microarray. Overall, almost all the serovar Enteritidis genomes were very similar to each other. Excluding two rare strains classified as serovar Enteritidis in the Salmonella reference collection B, only eleven regions of the serovar Enteritidis phage type 4 (PT4) chromosome (sequenced at the Sanger Center) were absent or divergent in any of the other serovar Enteritidis strains tested. The more recent isolates did not have consistent differences from 60-year-old field isolates, suggesting that no large genomic additions on a whole-gene scale were needed for serovar Enteritidis to become more prevalent in domestic fowl. Cross-hybridization of phage genes on the array with related genes in the examined genomes grouped the serovar Enteritidis isolates into two major lineages. Microarray comparisons of the sequenced serovar Enteritidis PT4 to isolates of the closely related serovars Dublin and Gallinarum (biovars Gallinarum and Pullorum) revealed several genomic areas that distinguished them from serovar Enteritidis and from each other. These differences in gene content could be useful in DNA-based typing and in understanding the different phenotypes of these related serovars.  相似文献   

19.
Salmonella enterica serovar Typhimurium encounters numerous host environments and defense mechanisms during the infection process. The bacterium responds by tightly regulating the expression of virulence genes. We identified two regulatory proteins, termed RtsA and RtsB, which are encoded in an operon located on an island integrated at tRNA(PheU) in S. enterica serovar Typhimurium. RtsA belongs to the AraC/XylS family of regulators, and RtsB is a helix-turn-helix DNA binding protein. In a random screen, we identified five RtsA-regulated fusions, all belonging to the Salmonella pathogenicity island 1 (SPI1) regulon, which encodes a type III secretion system (TTSS) required for invasion of epithelial cells. We show that RtsA increases expression of the invasion genes by inducing hilA expression. RtsA also induces expression of hilD, hilC, and the invF operon. However, induction of hilA is independent of HilC and HilD and is mediated by direct binding of RtsA to the hilA promoter. The phenotype of an rtsA null mutation is similar to the phenotype of a hilC mutation, both of which decrease expression of SPI1 genes approximately twofold. We also show that RtsA can induce expression of a SPI1 TTSS effector, slrP, independent of any SPI1 regulatory protein. RtsB represses expression of the flagellar genes by binding to the flhDC promoter region. Repression of the positive activators flhDC decreases expression of the entire flagellar regulon. We propose that RtsA and RtsB coordinate induction of invasion and repression of motility in the small intestine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号