首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that phospholipase C-gamma (PLC-gamma) is activated by the central repeated units (CRUs) of the AHNAK protein in the presence of arachidonic acid. Here we demonstrate that four central repeated units (4 CRUs) of AHNAK act as a scaffolding motif networking PLC-gamma and PKC-alpha. Specifically, 4 CRUs of AHNAK bind and activate PKC-alpha, which in turn stimulates the release of arachidonic acid near where PLC-gamma1 is localized. Moreover, 4 CRUs of AHNAK interacted with PLC-gamma and the concerted action of 4 CRUs with arachidonic acid stimulated PLC-gamma activity. Stimulation of NIH3T3 cells expressing 4 CRUs of AHNAK with phorbol 12-myristate 13-acetate resulted in the increased generation of total inositol phosphates (IP(T)) and mobilization of the intracellular calcium. Phorbol 12-myristate 13-acetate-dependent generation of IP(T) was completely blocked in NIH3T3 cells depleted of PLC-gamma1 by RNA interference. Furthermore, bradykinin, which normally stimulated the PLC-beta isozyme resulting in the generation of a monophasic IP(T) within 30 s in NIH3T3 cells, led to a biphasic pattern for generation of IP(T) in NIH3T3 cells expressing 4 CRUs of AHNAK. The secondary activation of PLC is likely because of the scaffolding activity of AHNAK, which is consistent with the role of 4 CRUs as a molecular linker between PLC-gamma and PKC-alpha.  相似文献   

2.
SLP-76 forms part of a hematopoietic-specific adaptor protein complex, and is absolutely required for T cell development and activation. T cell receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1) depends on three features of SLP-76: the N-terminal tyrosine phosphorylation sites, the Gads-binding site, and an intervening sequence, denoted the P-I region, which binds to the SH3 domain of PLC-gamma1 (SH3(PLC)) via a low affinity interaction. Despite extensive research, the mechanism whereby SLP-76 regulates PLC-gamma1 remains uncertain. In this study, we uncover and explore an apparent paradox: whereas the P-I region as a whole is essential for TCR-induced activation of PLC-gamma1 and nuclear factor of activated T cells (NFAT), no particular part of this region is absolutely required. To better understand the contribution of the P-I region to PLC-gamma1 activation, we mapped the PLC-gamma1-binding site within the region, and created a SLP-76 mutant that fails to bind SH3(PLC), but is fully functional, mediating TCR-induced phosphorylation of PLC-gamma1 at tyrosine 783, calcium flux, and nuclear factor of activated T cells activation. Unexpectedly, full functionality of this mutant was maintained even under less than optimal stimulation conditions, such as a low concentration of the anti-TCR antibody. Another SLP-76 mutant, in which the P-I region was scrambled to abolish any sequence-dependent protein-binding motifs, also retained significant functionality. Our results demonstrate that SLP-76 need not interact with SH3(PLC) to activate PLC-gamma1, and further suggest that the P-I region of SLP-76 serves a structural role that is sequence-independent and is not directly related to protein-protein interactions.  相似文献   

3.
Platelet aggregation stimulated by thrombin, arachidonic acid or lysophosphatidic acid is associated with rapid phosphorylation of two platelet proteins, myosin light chain and a 47 kDa protein. The polyamine, spermine, inhibited platelet aggregation stimulated by all three agents. Spermine inhibited thrombin-stimulated phosphorylation of myosin light chain and the 47 kDa proteins as well as thrombin-induced production of the inositol phosphates and phosphatidic acid. In contrast, spermine did not inhibit phosphorylation of either protein or the formation of inositol phosphates and phosphatidic acid in response to arachidonic acid or lysophosphatidic acid. Although spermine has been demonstrated to inhibit both phosphatidylinositol-specific phospholipase C and calcium-dependent protein kinases in cell free systems, these results suggest that, in the intact platelet, spermine does not directly inhibit these enzymes. Inhibition of aggregation stimulated by arachidonic acid and lysophosphatidic acid is secondary to interference with platelet-platelet interaction but not with platelet activation. In contrast, spermine inhibits thrombin-induced platelet activation. This thrombin-specific inhibition may be related to interference with the binding of thrombin to its receptor or to its catalytic substrate on the cell surface.  相似文献   

4.
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.  相似文献   

5.
The release of arachidonic acid from cellular phospholipids and its subsequent conversion to eicosanoids is the common early response of skin keratinocytes to a wide variety of exogenous or endogenous agonists including irritant skin mitogens such as the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA) or the inflammatory peptide bradykinin. In mouse keratinocytes labeled with [14C]arachidonic acid, both PMA and bradykinin induced the release of the fatty acid in a dose-dependent and time-dependent manner. Three lines of evidence indicate phospholipase A2 activity to be involved in arachidonic acid release: (a) its inhibition by mepacrine, (b) the concomitant generation of lysophosphatidylcholine from [3H]choline-labeled cells and (c) an increase in arachidonic acid release from 14C-labeled phosphatidylcholine in particulate fractions from PMA-treated and bradykinin-treated keratinocytes. Inhibition or down regulation of protein kinase C (PKC) led to a suppression of PMA-induced but not bradykinin-induced arachidonic acid release, indicating a critical involvement of this kinase in phorbol-ester-induced activation of epidermal phospholipase A2 activity. Bradykinin-induced activation of phospholipase A2 was however, shown to be mediated by specific B2 receptors coupled to GTP-binding proteins (G protein). In support of this mechanism it was demonstrated that the bradykinin-induced phospholipase A2 activity was increased in the presence of non-hydrolysable GTP but decreased upon addition of non-hydrolysable GDP analogues. Moreover, cholera toxin stimulated both basal and bradykinin-induced phospholipase A2 activity in a cAMP-independent manner, whereas pertussis toxin was found to be inactive in this respect. The data suggest that epidermal phospholipase A2 activity can be stimulated by bradykinin via a B2 receptor-G-protein-dependent pathway, which is independent of PKC and a PKC-dependent pathway which is activated by phorbol esters such as PMA.  相似文献   

6.
In order to examine physiological function of the SH2/SH3 region of phospholipase C-gamma (Z region), we independently expressed cDNA fragments corresponding to the SH2/SH3 region of PLC-gamma 1 and PLC-gamma 2 in Escherichia coli. Although these recombinant proteins were recovered in particulate fractions by centrifugation of cell extracts, they were successfully solubilized by guanidium hydrochloride and then purified to homogeneity by heparin column chromatography. The molecular mass of the proteins was 45 kDa (derived from PLC-gamma 1 and designated as rP45Z) and 38 kDa (derived from PLC-gamma 2 and designated as rP38Z), which was consistent with that as expected from inserted cDNA. We determined the effect of purified rP45Z or rP38Z on PIP2-hydrolyzing activity of either PLC-gamma 1 or PLC-gamma 2 and found that these proteins strongly suppressed the rate of PLC-dependent PIP2-hydrolysis. Furthermore, both rP45Z and rP38Z were phosphorylated at tyrosine residue by epidermal growth factor receptors and their inhibitory effect on PIP2-hydrolysis was significantly decreased by this phosphorylation. These results indicate that the Z region might be involved in autoregulation of PLC-gamma as intrinsic negative regulator.  相似文献   

7.
Secretory phospholipase A(2) (sPLA(2)) plays important roles in mediating various cellular processes, including cell proliferation, differentiation, apoptosis, and inflammatory response. In this study, we demonstrated that a basic sPLA(2) inhibits epidermal growth factor (EGF)-induced EGF receptor activation, as determined by autophosphorylation of EGF receptor, EGF-activated phospholipase D (PLD) activity, and phospholipase C-gamma(1) (PLC-gamma(1)) tyrosine phosphorylation in a human epidermoid carcinoma cell line, A-431. Treatment of cells with exogenous neutral sphingomyelinase (SMase) or a cell permeable ceramide analog, C(2)-ceramide, also caused similar inhibitory effects on EGF-induced activation of EGF receptor, tyrosine phosphorylation of PLC-gamma(1), and the activation of PLD. sPLA(2)-induced inhibition of EGF receptor was associated with arachidonic acid release, which was followed by an increase in intracellular ceramide formation. Both sPLA(2) and exogenous C(2)-ceramide are able to inhibit the proliferation of A-431. The data presented indicate for the first time that sPLA(2) downregulates the EGF receptor-mediated intracellular signal transduction that may be mediated by arachidonic acid and/or ceramide.  相似文献   

8.
The effect of ethanol on signal generation in collagen-stimulated human platelets was evaluated. Incubation of washed human platelets with physiologically relevant concentrations of ethanol (25-150 mM) resulted in a dose-dependent inhibition of aggregation and secretion in response to collagen (0.5-10 micrograms/ml), but did not inhibit shape change. In platelets labeled with [3H]arachidonic acid, ethanol significantly inhibited the release of arachidonic acid from phospholipids, in both the presence and the absence of indomethacin. Thromboxane B2 formation was also inhibited in proportion to the reduction in free arachidonic acid. There was a close correlation between the extent of inhibition of arachidonic acid release and secretion. The inhibition of platelet aggregation and secretion by ethanol was partially overcome by the addition of exogenous arachidonic acid. In the presence of indomethacin, ethanol had no effect on the activation of phospholipase C by collagen as determined by the formation of inositol phosphates and phosphatidic acid. Moreover, ethanol had no effect on the mobilization of intracellular calcium by collagen and only minimally inhibited the early phases of the phosphorylation of myosin light chain (20 kDa) and a 47-kDa protein, a known substrate for protein kinase C. Arachidonic acid formation was also inhibited by ethanol in response to ionomycin under conditions where phospholipase C activation was prevented. The results suggest that the functional effects of ethanol on collagen-stimulated platelets are due, at least in part, to an inhibition of phospholipase A2.  相似文献   

9.
Transformation of rat embryo fibroblast clone 6 cells by ras and temperature-sensitive p53val(135) is reverted by ectopic expression of the calcium- and zinc-binding protein S100B. In an attempt to define the molecular basis of the S100B action, we have identified the giant phosphoprotein AHNAK as the major and most specific Ca(2+)-dependent S100B target protein in rat embryo fibroblast cells. We next characterized AHNAK as a major Ca(2+)-dependent S100B target protein in the rat glial C6 and human U-87MG astrocytoma cell lines. AHNAK binds to S100B-Sepharose beads and is also recovered in anti-S100B immunoprecipitates in a strict Ca(2+)- and Zn(2+)-dependent manner. Using truncated AHNAK fragments, we demonstrated that the domains of AHNAK responsible for interaction with S100B correspond to repeated motifs that characterize the AHNAK molecule. These motifs show no binding to calmodulin or to S100A6 and S100A11. We also provide evidence that the binding of 2 Zn(2+) equivalents/mol S100B enhances Ca(2+)-dependent S100B-AHNAK interaction and that the effect of Zn(2+) relies on Zn(2+)-dependent regulation of S100B affinity for Ca(2+). Taking into consideration that AHNAK is a protein implicated in calcium flux regulation, we propose that the S100B-AHNAK interaction may participate in the S100B-mediated regulation of cellular Ca(2+) homeostasis.  相似文献   

10.
Stimulation of human platelets with thrombin is accompanied by activation of both phospholipases C and A2. These have been considered to be sequential events, with phospholipase A2 activation resulting from the prior hydrolysis of inositol phospholipids and mobilization of intracellular Ca2+ stores. However, our and other laboratories have recently questioned this proposal, and we now present further evidence that these enzymes may be activated by separate mechanisms during thrombin stimulation. Alpha-thrombin induced the rapid hydrolysis of inositol phospholipids, and formation of inositol trisphosphate and phosphatidic acid. This was paralleled by mobilization of Ca2+ from internal stores. These responses were blocked by about 50% by prostacyclin. In contrast, the liberation of arachidonic acid induced by alpha-thrombin was totally inhibited by prostacyclin. The less-effective agonists, platelet activating factor (PAF) and gamma-thrombin also both stimulated phospholipase C, but whereas PAF evoked a rapid and transient response, that of gamma-thrombin was delayed and more sustained. The abilities of these agonists to induce the release of Ca2+ stores closely paralleled phospholipase C activation. However, the maximal intracellular Ca2+ concentrations achieved by these two agents were the same. Despite this, gamma-thrombin and not PAF, was able to release a small amount of arachidonic acid. When alpha-thrombin stimulation of platelets was preceded by epinephrine, there was a potentiation of phospholipase C activation, Ca2+ mobilization and aggregation. The same was true for gamma-thrombin and PAF. However, unlike alpha-thrombin, the gamma-thrombin-stimulated arachidonic acid release was not potentiated by epinephrine, but rather somewhat reduced. These results suggested that phospholipase C and phospholipase A2 were separable events in activated platelets. The mechanism by which alpha-thrombin stimulated phospholipase A2 did not appear to be through dissociation of the inhibitory GTP-binding protein, Gi, since gamma-thrombin decreased the pertussis toxin-induced ADP-ribosylation of the 41 kDa protein as much as did alpha-thrombin, but was a much less effective agent than alpha-thrombin at inducing arachidonic acid liberation.  相似文献   

11.
Mouse peritoneal macrophages respond to activators of protein kinase C and to zymosan particles and calcium ionophore by rapid enhancement of a phospholipase A pathway and mobilization of arachidonic acid. The pattern of protein phosphorylation induced in these cells by 4 beta-phorbol 12-myristate 13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol, exogenous phospholipase C and by zymosan and ionophore A23187 was found to be virtually identical. The time course of phosphorylation differed among the phosphoprotein bands and in only some of those identified (i.e., those of 45 and 65 kDa) was the phosphorylation sufficiently rapid to be involved in the activation of the phospholipase A pathway. Phosphorylation of lipocortin I or II could not be detected. Down-regulation of kinase C by a 24-h pretreatment with PMA resulted in extensive inhibition of both protein phosphorylation and the mobilization of arachidonic acid in response to PMA or dioctanoylglycerol. The phosphorylation of the 45 kDa protein in response to zymosan and A23187 was also inhibited by pretreatment with PMA, while only arachidonic acid release induced by zymosan was inhibited by this pretreatment. Depletion of intracellular calcium had little effect on kinase C-dependent phosphorylation, although arachidonic acid mobilization is severely inhibited under these conditions. Bacterial lipopolysaccharide and lipid A induced a phosphorylation pattern different from that induced by PMA, and down-regulation of protein kinase C did not affect lipopolysaccharide-induced protein phosphorylation. The results indicate (i) that protein kinase C plays a critical role also in zymosan-induced activation of the phospholipase A pathway mobilizing arachidonic acid; (ii) that such activation requires calcium at some step distal to kinase C-mediated phosphorylation and (iii) that phosphorylation of lipocortins does not explain the kinase C-dependent activation.  相似文献   

12.
In Swiss 3T3 fibroblasts bombesin stimulated the release of arachidonic acid in a time- and dose-dependent manner. Arachidonate levels were significantly elevated after only a 2-s stimulation with the agonist. Furthermore, by measuring the arachidonate content of cellular phospholipids after cell activation, it was shown that there was selective depletion from phosphatidylcholine over the same time course. The corresponding production of lysophosphatidylcholine suggested the involvement of a phosphatidylcholine-specific phospholipase A2. Initial arachidonic acid release was not dependent on the presence of extracellular calcium, not activated by treatment of the cells with thapsigargin, and was unaffected by down-regulation of protein kinase C activity, or by treatment of the cells with the protein kinase C inhibitor staurosporine. These data strongly suggest that occupation of the bombesin receptor is closely coupled to activation of phospholipase A2 which results in the rapid release of arachidonic acid from phosphatidylcholine.  相似文献   

13.
Cross-linking of 4-1BB, a member of the TNFR family, increased tyrosine phosphorylation of TCR-signaling molecules such as CD3epsilon, CD3zeta, Lck, the linker for activation of T cells, and SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76). In addition, incubation of activated CD8+ T cells with p815 cells expressing 4-1BBL led to redistribution of the lipid raft domains and Lck, protein kinase C-theta;, SLP-76, and phospholipase C-gamma1 (PLC-gamma1) on the T cell membranes to the areas of contact with the p815 cells and recruitment of 4-1BB, TNFR-associated factor 2, and phospho-tyrosine proteins to the raft domains. 4-1BB ligation also caused translocation of TNFR-associated factor 2, protein kinase C-theta;, PLC-gamma1, and SLP-76 to detergent-insoluble compartments in the CD8+ T cells, and cross-linking of 4-1BB increased intracellular Ca2+ levels apparently by activating PLC-gamma1. The redistribution of lipid rafts and Lck, as well as translocation of PLC-gamma1, and degradation of IkappaB-alpha in response to 4-1BB were inhibited by disrupting the formation of lipid rafts with methyl-beta-cyclodextrin. These findings demonstrate that 4-1BB is a T cell costimulatory receptor that activates TCR-signaling pathways in CD8+ T cells.  相似文献   

14.
Several reports have suggested that the activity of platelet phospholipase A2 is modulated by GTP-binding protein(s) whose nature and properties need to be defined. Fluoroaluminate is known to activate G-proteins and this leads to a number of cellular responses including the activation of phospholipases. This paper demonstrates that human platelets, prelabelled with [3H]arachidonic acid, produce free arachidonic acid when stimulated with fluoroaluminate and this effect is time- and dose-dependent. The production of arachidonic acid is not inhibited by neomycin, a PI-cycle inhibitor, but is completely abolished by mepacrine, an inhibitor of both phospholipase A2 and C. At low concentration of fluoroaluminate (10 mM NaF) phospholipase A2 but not phospholipase C is activated. In addition, fluoroaluminate treatment releases beta-thromboglobulin (beta-TG) and this effect is not inhibited by acetylsalicylic acid. Under identical conditions both neomycin and mepacrine suppress the release of arachidonic acid and beta-TG induced by thrombin. Sodium nitroprusside, which increases cGMP levels in platelets, inhibits arachidonic acid liberation and beta-TG release in thrombin-stimulated platelets but has no effect in fluoroaluminate-treated platelets; cGMP was reported to suppress phospholipase C activation. These results are consistent with the hypothesis that, in thrombin-stimulated platelets, the liberation of arachidonic acid and beta-TG are strictly dependent on the activation of phospholipase C. We have also provided evidence for the existence of a phospholipase A2 activated by a G-protein which is independent from the degradation of phosphoinositides and, contrary to phospholipase C, it is not down regulated by cGMP.  相似文献   

15.
The initiation of calcium release at fertilization in the eggs of most animals relies on the production of IP3, implicating the activation of phospholipase C. Recent work has demonstrated that injection of PLC-gamma SH2 domain fusion proteins into starfish eggs specifically inhibits the initiation of calcium release in response to sperm, indicating that PLC-gamma is necessary for Ca2+ release at fertilization [Carroll et al. (1997) J. Cell Biol. 138, 1303-1311]. Here we investigate how PLC-gamma may be activated, by using the PLC-gamma SH2 domain fusion protein as an affinity matrix to identify interacting proteins. A tyrosine kinase activity and an egg protein of ca. Mr 58 K that is recognized by an antibody directed against Src family tyrosine kinases associate with PLC-gamma SH2 domains in a fertilization-dependent manner. These associations are detected by 15 s postfertilization, consistent with a function in releasing Ca2+. Calcium ionophore treatment of eggs did not cause association of the kinase activity or of the Src family protein with the PLC-gamma SH2 domains. These data identify an egg Src family tyrosine kinase as a potential upstream regulator of PLC-gamma in the activation of starfish eggs.  相似文献   

16.
Src homology (SH) domains of phospholipase C-gamma1 (PLC-gamma1) impair NGF-mediated PC12 cells differentiation. However, whether the enzymatic activity is also implicated in this process remains elusive. Here, we report that the enzymatic activity of phospholipase C-gamma1 (PLC-gamma1) is at least partially involved to the blockage of neuronal differentiation via an abrogation of MAPK activation, as well as sustained Akt activation. By contrast, Overexpression of WT-PLC-gamma1 exhibited sustained NGF-induced MAPK activation, and triggered transient Akt activation resulting in profound inhibition of neurite outgrowth. However, lipase-inactive mutant (LIM) PLC-gamma1 cells fail to suppress neurite outgrowth, although it contains intact SH domains, specifically enhancing the expression of cyclin D1 and p21 proteins, which regulate the function of retinoblastoma Rb protein. These observations show that the lipase inactive mutant of PLC-gamma1 does not alter NGF-induced neuronal differentiation via enzymatic inability and the odulation of cell cycle regulatory proteins independent on SH3 domain.  相似文献   

17.
Both phospholipase (PL) C-gamma1 and Akt (protein kinase B; PKB) are signaling proteins that play significant roles in the intracellular signaling mechanism used by receptor tyrosine kinases, including epidermal growth factor (EGF) receptor (EGFR). EGFR activates PLC-gamma1 directly and activates Akt indirectly through phosphatidylinositol 3-kinase (PI3K). Many studies have shown that the PLC-gamma1 pathway and PI3K-Akt pathway interact with each other. However, it is not known whether PLC-gamma1 binds to Akt directly. In this communication, we identified a novel interaction between PLC-gamma1 and Akt. We demonstrated that the interaction is mediated by the binding of PLC-gamma1 Src homology (SH) 3 domain to Akt proline-rich motifs. We also provide a novel model to depict how the interaction between PLC-gamma1 SH3 domain and Akt proline-rich motifs is dependent on EGF stimulation. In this model, phosphorylation of PLC-gamma1 Y783 by EGF causes the conformational change of PLC-gamma1 to allow the interaction of its SH3 domain with Akt proline-rich motifs. Furthermore, we showed that the interaction between PLC-gamma1 and Akt resulted in the phosphorylation of PLC-gamma1 S1248 by Akt. Finally, we showed that the interaction between PLC-gamma1 and Akt enhanced EGF-stimulated cell motility.  相似文献   

18.
《The Journal of cell biology》1995,130(5):1197-1205
Fibroblast contraction of stressed collagen matrices results in activation of a cAMP signal transduction pathway. This pathway involves influx of extracellular Ca2+ ions and increased production of arachidonic acid. We report that within 5 min after initiating contraction, a burst of phosphatidic acid release was detected. Phospholipase D was implicated in production of phosphatidic acid based on observation of a transphosphatidylation reaction in the presence of ethanol that resulted in formation of phosphatidylethanol at the expense of phosphatidic acid. Activation of phospholipase D required extracellular Ca2+ ions and was regulated by protein kinase C. Ethanol treatment of cells also inhibited by 60-70% contraction-dependent release of arachidonic acid and cAMP but had no effect on increased cAMP synthesis after addition of exogenous arachidonic acid or on phospholipase A2 activity measured in cell extracts. Moreover, other treatments that inhibited the burst of phosphatidic acid release after contraction--chelating extracellular Ca2+ or down-regulating protein kinase C--also blocked contraction activated cyclic AMP signaling. These results were consistent with the idea that phosphatidic acid production occurred upstream of arachidonic acid in the contraction- activated cAMP signaling pathway.  相似文献   

19.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   

20.
Degradation of inositides induced by phospholipase C in activated platelets leads to the formation of 1,2-diacylglycerol (1,2-DG) and its phosphorylated product, phosphatidic acid (PA). We have studied the relationship between activation of phospholipase C and the appearance of specific platelet responses, such as phosphorylation of proteins, shape change, release reaction and aggregation induced by different stimuli such as thrombin, platelet-activating factor, collagen, arachidonic acid (AA) and dihomogamma linolenic acid. A low degree of platelet activation induces only shape change which is associated with partial activation of phospholipase C (formation of phosphatidic acid), and phosphorylation of both a 40K molecular weight protein (protein kinase C activation) and a 20K molecular weight protein (myosin light chain). A higher degree of platelet activation induces aggregation, release of serotonin and a higher level of phospholipase C and protein kinase C activities. Metabolism of AA occurs concomitantly to aggregation and serotonin release, but AA metabolites are not related to the shape change of human platelets. Platelet shape change and the initial activation of phospholipase C induced by thrombin or platelet-activating factor is independent of the metabolites derived from cyclo-oxygenase activity. Further activation of phospholipase C which occurs during platelet aggregation and release reaction is, however, partly dependent on cyclo-oxygenase metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号