首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Assessment of in vitro effects of metyrapone on Leydig cell steroidogenesis   总被引:1,自引:0,他引:1  
Metyrapone, a specific inhibitor of 11beta-hydroxylase inhibits glucocorticoid production and it is used in the diagnosis/treatment of hypercortisolism and also to test the functional integrity of hypothalamo-pituitary-adrenal axis. To assess the impact of glucocorticoid deficiency, this drug is preferred over adrenalectomy, which eliminates all the hormonal secretions of the adrenal cortex and medulla. However, whether metyrapone has any direct effect on the extra-adrenocortical cellular or tissue functions remains to be resolved. Our previous study showed a depressed testicular Leydig cell testosterone production in rats treated with metyrapone. Therefore, the present study was designed to examine the possible direct effect of metyrapone on testicular Leydig cell steroidogenesis in vitro. Leydig cell viability and the reactive oxygen species (ROS) concentration were not altered by any of the concentration of metyrapone tested. The efficacy of Leydig cell testosterone production under basal as well as LH-stimulated condition was not altered by metyrapone treatment. Further, Leydig cellular (14)C-glucose oxidation, the activity and mRNA levels of cytochrome side chain cleavage (P(450)scc), 3beta- and 17beta-hydroxysteroid dehydrogenase (3beta-HSD and 17beta-HSD) were not altered in metyrapone-treated cells. Therefore, it is concluded from the present study that metyrapone has no direct effect on Leydig cell testosterone production and, therefore, changes recorded in the in vivo studies are exclusively due to corticosterone deficiency.  相似文献   

2.
Two adenylate cyclase inhibitors: 9-(tetrahydro-2-furyl)adenine and 2'5'-dideoxyadenosine decreased cAMP levels in LH-stimulated immature rat Leydig cells by 20-40%, independent of the concentration of LH. Steroid production was not correlated with this decrease in cAMP, but was increased (146%). The phorbol ester 4 beta-phorbol-12-myristate-13-acetate stimulated steroidogenesis and the phosphorylation of a 17 kD and a 33 kD protein, which was also stimulated by LH, whereas the inactive phorbol ester 4 beta-phorbol-12,13-diacetate did not have any effects. Moreover, the Ca2+-channel blocker diltiazem inhibited LH effects, but had no direct effects on the cholesterol side chain cleavage enzyme. It is concluded that cAMP may not be the only second messenger in LH action, and that other second messenger systems are probably also involved.  相似文献   

3.
4.
5.
Rat testicular interstitial fluid and hydroxycholesterol both stimulated testosterone production by isolated Leydig cells in vitro in a dose-dependent manner, but the dose-response lines were not parallel. The addition of cycloheximide blocked the stimulation by interstitial fluid but not that of hydroxycholesterol. Use of the compounds SU 10603 and cyanoketone (which inhibit 3 beta-hydroxysteroid dehydrogenase and 17 alpha-hydroxylase respectively) or aminoglutethimide (which acts on the cholesterol side-chain cleavage enzyme) showed that the stimulatory factor(s) in interstitial fluid stimulated steroidogenesis at the cholesterol side-chain cleavage enzyme, before the conversion of pregnenolone. This enzyme is rate-limiting in the synthesis of testosterone by Leydig cells and a site of action of LH; therefore, these results support the view that an interstitial fluid factor may be involved in the paracrine regulation of testicular steroidogenesis.  相似文献   

6.
The properties of cells isolated from a Leydig cell tumour have been compared with normal rat testis Leydig cells. These cells were found to be similar in the following respects: 1. Lutropin-stimulated cyclic AMP and testosterone production. 2. Lutropin-activated protein kinase activity followed by phosphorylation of endogenous proteins of mol. wts. 57,000and 14,000. 3. Parallel lutropin dose vs. response curves for phosphorylation of the endogenous proteins and for testosterone production. 4. Two forms of isoenzyme, cyclic AMP dependent protein kinase, present. They differed mainly with respect to the lutropin-stimulated testosterone production, which was much lower in the tumour cells compared with the normal adult testis Leydig cells (4.6 +/- 1.1 and 114 +/- 16 ng testosterone/10(6) cells per 2 h, respectively). However, the lutropin-stimulated steroid production in the tumour cells was quantitatively comparable with the normal rat Leydig cell when the metabolism of pregnenolone in intact cells and mitochondria was inhibited by addition of SU-10603 and/or cyanoketone. It is concluded that the Leydig cell tumour used in this study can be used to investigate certain aspects of lutropin action where large quantities of cells are required.  相似文献   

7.
Testicular mitochondria were previously shown to contain an abundance of peripheral-type benzodiazepine recognition site(s)/receptor(s) (PBR). We have previously purified, cloned, and expressed an Mr 18,000 PBR protein (Antkiewicz-Michaluk, Mukhin, A. G., Guidotti, A., and Krueger, K. E. (1988) J. Biol. Chem. 263, 17317-17321; (Sprengel, R., Werner, P., Seeburg, P. H., Mukhin, A. G., Santi, M. R., Grayson, D. R., Guidotti, A., and Krueger, K. E. (1989) J. Biol. Chem. 264, 20415-20421); and in this report, we present evidence that PBR are functionally linked to Leydig cell steroid biosynthesis. A spectrum of nine different ligands covering a range of over 4 orders of magnitude in their affinities for PBR were tested for their potencies to modulate steroidogenesis in the MA-10 mouse Leydig tumor cell line. The Ki for inhibition of [3H]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide binding and the EC50 for steroid biosynthesis for this series of compounds showed a correlation coefficient of r = 0.95. The most potent ligands stimulated steroid production by approximately 4-fold in these cells. This stimulation was not inhibited by cycloheximide, unlike human chorionic gonadotropin- or cyclic AMP-activated steroidogenesis. The action of PBR ligands was not additive to stimulation by human chorionic gonadotropin or cyclic AMP, but was additive to that of epidermal growth factor, another regulator of MA-10 Leydig cell steroidogenesis. Moreover, PBR ligands stimulated, in a dose-dependent manner, pregnenolone biosynthesis by isolated mitochondria when supplied with exogenous cholesterol. This effect was not observed with mitoplasts (mitochondria devoid of the outer membrane). Cytochrome P-450 side chain cleavage activity, as measured by metabolism of (22R)-hydroxycholesterol, was not affected by PBR ligands in intact cells. Similar results were also obtained with purified rat Leydig cells. In conclusion, PBR are implicated in the acute stimulation of Leydig cell steroidogenesis possibly by mediating the entry, distribution, and/or availability of cholesterol within mitochondria.  相似文献   

8.
9.
Clinical and experimental studies have shown the adverse effects of glucocorticoid deficiency/metyrapone treatment on testicular Leydig cell testosterone production. However, molecular mechanisms that underlie the effects of glucocorticoid deficiency on Leydig cell steroidogenesis are not yet determined. Therefore, the present study was designed to assess the mechanism of this phenomenon. Following metyrapone-induced corticosterone deficiency, serum testosterone, and Leydig cell 14C-glucose oxidation were decreased. StAR mRNA and protein levels were significantly increased in Leydig cells of corticosterone-deficient animals. mRNA levels and the specific activities of P(450)scc and 17beta-HSD were decreased by corticosterone deficiency, whereas the activity and mRNA of 3beta-HSD were increased. Simultaneous administration of corticosterone prevented its deficiency-induced changes in Leydig cells. Our results show that metyrapone-induced corticosterone deficiency impairs Leydig cell testosterone production by decreasing the activities of steroidogenic enzymes and their mRNA expression and glucose oxidation.  相似文献   

10.
Hsu CC  Tsai SJ  Huang YL  Huang BM 《FEBS letters》2003,543(1-3):140-143
We demonstrate the mechanism by which Cordyceps sinensis (CS) mycelium regulates Leydig cell steroidogenesis. Mouse Leydig cells were treated with forskolin, H89, phorbol 12-myristate 13-acetate, staurosporine, or steroidogenic enzyme precursors with or without 3 mg/ml CS; then testosterone production was determined. H89, but not phorbol 12-myristate 13-acetate or staurosporine, decreased CS-treated Leydig cell steroidogenesis. CS inhibited Leydig cell steroidogenesis by suppressing the activity of P450scc enzyme, but not 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase, 20alpha-hydroxylase, or 17beta-hydroxysteroid dehydrogenase enzymes. Thus, CS activated the cAMP-protein kinase A signal pathway, but not protein kinase C, and attenuated P45scc enzyme activity to reduce human chorionic gonadotropin-stimulated steroidogenesis in purified mouse Leydig cells.  相似文献   

11.
The effects of transforming growth factor (TGF) on Leydig cell steroidogenesis in primary culture were investigated. Basal testosterone levels were 3.7 +/- 0.54 ng/ml (mean +/- SE, N = 7). In the presence of hCG (10 ng/ml), testosterone levels increased to 22.77 +/- 3.05 ng/ml. TGF-beta caused a dose dependent inhibition of hCG-stimulated testosterone formation but without effects on basal levels. TGF-beta also inhibited 8-bromo cyclic AMP-induced testosterone formation and hCG-stimulated cyclic AMP formation. In contrast, TGF-alpha had no effect on either basal or hCG-stimulated testosterone formation and did not modify the inhibitory effect of TGF-beta. Present study indicates that TGF-beta can modulate Leydig cell steroidogenesis.  相似文献   

12.
Kit and its ligand, Kitl, function in hematopoiesis, melanogenesis, and gametogenesis. In the testis, Kitl is expressed by Sertoli cells and Kit is expressed by spermatogonia and Leydig cells. Kit functions are mediated by receptor autophosphorylation and subsequent association with signaling molecules, including phosphoinositide (PI) 3-kinase. We previously characterized the reproductive consequences of blocking Kit-mediated PI 3-kinase activation in KitY(719F)/Kit(Y719F) knockin mutant male mice. Only gametogenesis was affected in these mice, and males are sterile because of a block in spermatogenesis during the spermatogonial stages. In the present study, we investigated effects of the Kit(Y719F) mutation on Leydig cell development and steroidogenic function. Although the seminiferous tubules in testes of mutant animals are depleted of germ cells, the testes contain normal numbers of Leydig cells and the Leydig cells in these animals appear to have undergone normal differentiation. Evaluation of steroidogenesis in mutant animals indicates that testosterone levels are not significantly reduced in the periphery but that LH levels are increased 5-fold, implying an impairment of steroidogenesis in the mutant animals. Therefore, a role for Kit signaling in steroidogenesis in Leydig cells was sought in vitro. Purified Leydig cells from C57Bl6/J male mice were incubated with Kitl, and testosterone production was measured. Kitl-stimulated testosterone production was 2-fold higher than that in untreated controls. The Kitl-mediated testosterone biosynthesis in Leydig cells is PI 3-kinase dependent. In vitro, Leydig cells from mutant mice were steroidogenically more competent in response to LH than were normal Leydig cells. In contrast, Kitl-mediated testosterone production in these cells was comparable to that in normal cells. Because LH levels in mutant males are elevated and LH is known to stimulate testosterone biosynthesis, we proposed a model in which serum testosterone levels are controlled by elevated LH secretion. Leydig cells of mutant males, unable to respond effectively to Kitl stimulation, initially produce lower levels of testosterone, reducing testosterone negative feedback on the hypothalamic-pituitary axis. The consequent secretion of additional LH, under this hypothesis, causes a restoration of normal levels of serum testosterone. Kitl, acting via PI 3-kinase, is a paracrine regulator of Leydig cell steroidogenic function in vivo.  相似文献   

13.
Microglial activation has been studied extensively in diabetic retinopathy. We have previously detected activation and migration of microglia in 8-week-old diabetic rat retinas. It is widely acknowledged that microglia-mediated inflammation contributes to the progression of diabetic retinopathy. However, existing cell models do not explore the role of activated microglia in vitro. In this study, microglia were subject to various conditions mimicking diabetic retinopathy, including high glucose, glyoxal, and hypoxia. Under high glucose or glyoxal treatment, microglia demonstrated only partially functional changes, while under hypoxia, microglia became fully activated showing enlarged cell bodies, enhanced migration and phagocytosis as well as increased production of pro-inflammatory factors such as cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS). The data indicate that hypoxia-treated microglia is an optimal in vitro model for exploration of microglia activation in diabetic retinopathy.  相似文献   

14.
The effect of phorbol esters on the stimulation of testosterone production in response to LH was studied in mouse Leydig cells incubated in vitro. The tumor promoting phorbol esters, Phorbol-12-myristate-13-acetate and Phorbol-12-13-didecanoate at nanomolar concentrations effectively inhibited testosterone production by Leydig cells in response to stimulation by LH, whereas non-tumor promoting phorbol esters were ineffective. When the cells were stimulated by 8Br-cAMP, instead of LH, the testosterone production was stimulated similarly as in the presence of LH, but phorbol esters were without any effect. This suggests that the tumor promoting phorbol esters may act in the Leydig cells by suppressing the stimulation of cAMP production in response to hormonal activation and/or by interfering with the hormone-receptor interaction.  相似文献   

15.
Retinoic acid affects 3T6 and 3T3 cells by inhibiting growth, causing a morphological change and increasing cell-to-substratum adhesiveness. Retinoic acid does not exert such effects on virus-transformed 3T3SV cells. Retinoic acid treatment of 3T6 cells causes a concentration-dependent increase in generation time and a reduction in saturation density. Analysis of cell surface proteins shows that a high molecular weight band of 230 000 D, corresponding to the position of the LETS glycoprotein, is more intensely labeled by iodination of cells treated with retinoic acid compared to control cells. Retinoic acid substantially stimulates the incorporation of 35SO4 into cell-associated glycosaminoglycans and causes a less dramatic increase in glycosaminoglycans excreted into the medium. The relationship between the increase in these cell surface components and the enhanced adhesiveness is discussed. A retinoic acid binding protein is detectable in the cytosol of 3T6 and 3T3 cells but not in 3T3SV cells, suggesting that the action of retinoids on these cells is mediated via this protein.  相似文献   

16.
17.
Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (3H)-AVP was found to bind to a single class of sites with high affinity (Kd = 2.20 +/- 0.18 nM) and low capacity (Bmax = 17.4 +/- 1.8 fmol/10(6) Leydig cells). Binding displacements with specific selective analogs of AVP indicated the presence of V1 subtype receptors on Leydig cells. The ability of AVP to displace (3H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (3H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells (P less than 0.001). This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation (P less than 0.01). AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation (P less than 0.001). This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels. We conclude from these data that AVP is capable of modulating steroidogenesis in Leydig cells through specific and functionally V1 receptor subtype and postulate that this effect may be part of an intratesticular paracrine/autocrine control mechanism.  相似文献   

18.
Cell suspensions of normal adult rad adrenals have been prepared by trypsinization and incubated in Ham's nutrient mixture F10 containing horse serum, fetal calf serum, and lima bean trypsin inhibitor. In most experiments culture medium was not changed during incubation. In this system the number of cells fell to 50% after 2 days, then slowly declined to 20% after 1 month of incubation. A corticosterone (B) response was seen to as little as 5 muU of ACTH per millilitre, a concentration which is within the range found in normal rat serum. With maximal stimulation (100 mU ACTH/ml) the rate of accumulation was highest during the first 24 h then slowly decreased over the following 9 days. When in separate experiments ACTH was added after various times of incubation up to 3 weeks, there was a B response which continued for as long as 1 week after the ACTH was added; the later the time at which ACTH was added the lesser was the initial B response and the longer the lag period before a substantial response occurred. In cell suspensions in medium containing 5.0 mequiv. of K+ per litre, aldosterone content increased for approximately 24 h, then showed little or no change over the next 9 days. With increased K+ concentration, aldosterone was found in greater amounts and accumulation continued for longer periods, both without and with ACTH. This adrenal cell system appears suitable for long term study of factors affecting steroidogenesis.  相似文献   

19.
The dose and temporal (1-24 h) effects of two phenothiazines, chlorpromazine and trifluoperazine, on steroidogenesis and adenylate cyclase activity of gonadotropin-responsive Leydig tumor cells (M5480A) in primary culture were examined. At low doses (e.g. 0.1-1 microM) these antipsychotic drugs were slightly inhibitory (trifluoperazine) or without effect (chlorpromazine), while at 25 microM each drug was weakly stimulatory to basal testosterone production. Trifluoperazine was, in general, inhibitory to HCG-stimulated testosterone production, but chlorpromazine exhibited paradoxical effects. At 5 and 10 microM this neuroleptic agent increased HCG-stimulated steroidogenesis, while at 25 microM testosterone production was inhibited. In a particulate fraction prepared from the tumor the activity of adenylate cyclase was stimulated 3.4-fold in the presence of 10 microM 5'-guanylimidodiphosphate and 5-fold in the presence of HCG plus the non-hydrolyzable GTP analogue. Between doses of 1-100 microM neither drug altered the basal activity of adenylate cyclase. Trifluoperazine at doses of 1-100 microM inhibited 5'-guanylimidodiphosphate-stimulated adenylate cyclase activity both with and without added gonadotropin. At doses of 1-10 microM chlorpromazine had no effect on adenylate cyclase activity, but it stimulated activity in the dose range of 20-100 microM. Interestingly, in the presence of 5'-guanylimidodiphosphate this drug did not alter the stimulated enzymic activity achieved with a maximal dose of HCG. Therefore, these phenothiazines exhibit quite divergent dose-dependent effects and their actions must occur at multiple loci. Also, it seems unlikely that the effects of these agents on steroidogenesis and adenylate cyclase activity can be reconciled solely in terms of calmodulin-mediated processes.  相似文献   

20.
Luteinizing hormone (LH) interacts with its plasma membrane receptor to stimulate steroidogenesis not only via cyclic AMP but also other pathways which include arachidonic acid and leukotrienes and regulation of chloride and calcium channels. The same stimulatory pathways may lead to desensitization and down-regulation of the LH receptor and steroidogenesis. The LH receptor exists in a dynamic state, being truncated, or internalized, degraded or recycled. Desensitization is controlled by protein kinase C (PKC) in the rat and by cyclic AMP dependent protein kinase and PKC in the mouse Leydig cells. Using an adapted anti-sense oligonucleotide strategy we have shown that the cytoplasmic C-terminal sequence of the LH receptor is essential for desensitization to occur. In contrast, these sequences of the LH receptor are not required for the stimulation of cyclic AMP and steroid production. We have also shown that the extracellular domain of the LH receptor is secreted from the Leydig cell and may act as a LH-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号