首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance.  相似文献   

2.

Background  

A good scoring function is essential for molecular docking computations. In conventional scoring functions, energy terms modeling pairwise interactions are cumulatively summed, and the best docking solution is selected. Here, we propose to transform protein-ligand interactions into three-dimensional geometric networks, from which recurring network substructures, or network motifs, are selected and used to provide probability-ranked interaction templates with which to score docking solutions.  相似文献   

3.

Background

A profile-comparison method with position-specific scoring matrix (PSSM) is among the most accurate alignment methods. Currently, cosine similarity and correlation coefficients are used as scoring functions of dynamic programming to calculate similarity between PSSMs. However, it is unclear whether these functions are optimal for profile alignment methods. By definition, these functions cannot capture nonlinear relationships between profiles. Therefore, we attempted to discover a novel scoring function, which was more suitable for the profile-comparison method than existing functions, using neural networks.

Results

Although neural networks required derivative-of-cost functions, the problem being addressed in this study lacked them. Therefore, we implemented a novel derivative-free neural network by combining a conventional neural network with an evolutionary strategy optimization method used as a solver. Using this novel neural network system, we optimized the scoring function to align remote sequence pairs. Our results showed that the pairwise-profile aligner using the novel scoring function significantly improved both alignment sensitivity and precision relative to aligners using existing functions.

Conclusions

We developed and implemented a novel derivative-free neural network and aligner (Nepal) for optimizing sequence alignments. Nepal improved alignment quality by adapting to remote sequence alignments and increasing the expressiveness of similarity scores. Additionally, this novel scoring function can be realized using a simple matrix operation and easily incorporated into other aligners. Moreover our scoring function could potentially improve the performance of homology detection and/or multiple-sequence alignment of remote homologous sequences. The goal of the study was to provide a novel scoring function for profile alignment method and develop a novel learning system capable of addressing derivative-free problems. Our system is capable of optimizing the performance of other sophisticated methods and solving problems without derivative-of-cost functions, which do not always exist in practical problems. Our results demonstrated the usefulness of this optimization method for derivative-free problems.
  相似文献   

4.

Background  

Aligning homologous non-coding RNAs (ncRNAs) correctly in terms of sequence and structure is an unresolved problem, due to both mathematical complexity and imperfect scoring functions. High quality alignments, however, are a prerequisite for most consensus structure prediction approaches, homology searches, and tools for phylogeny inference. Automatically created ncRNA alignments often need manual corrections, yet this manual refinement is tedious and error-prone.  相似文献   

5.
6.
7.

Background  

A key component in protein structure prediction is a scoring or discriminatory function that can distinguish near-native conformations from misfolded ones. Various types of scoring functions have been developed to accomplish this goal, but their performance is not adequate to solve the structure selection problem. In addition, there is poor correlation between the scores and the accuracy of the generated conformations.  相似文献   

8.

Background  

The selection of the most accurate protein model from a set of alternatives is a crucial step in protein structure prediction both in template-based and ab initio approaches. Scoring functions have been developed which can either return a quality estimate for a single model or derive a score from the information contained in the ensemble of models for a given sequence. Local structural features occurring more frequently in the ensemble have a greater probability of being correct. Within the context of the CASP experiment, these so called consensus methods have been shown to perform considerably better in selecting good candidate models, but tend to fail if the best models are far from the dominant structural cluster. In this paper we show that model selection can be improved if both approaches are combined by pre-filtering the models used during the calculation of the structural consensus.  相似文献   

9.

Background  

Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding.  相似文献   

10.

Purpose

In social life cycle assessment (SLCA), to measure the social performance, it is necessary to consider the subcategory indicators related to each stakeholder dimension, such as workers, local community, society, consumers and value chain participants. Current methods in SLCA scientific literature consider a standard arbitrary linear score set to translate qualitative performances into a quantitative assessment for all subcategory indicators, i.e., it translate a A, B, C, D scoring into a 4, 3, 2, 1 ordinal scale. This assumption does not cover the complexity of the subcategory indicators in the social life cycle assessment phase. The aim of this paper is to set out a customized scoring and weighting approach for impact assessment in SLCA beyond the assumption of arbitrary linearity and equal weighting.

Methods

This method overcomes the linearity assumption and develops specific value functions for each subcategory indicator and an approach to establish the weighting factors between the indicators for each social dimension (workers, local community, and society). The value function and weighting factors are based on the considered opinions of SLCA experts in Québec.

Results and discussion

The results show that value functions with different shapes used to score the performance of the product within each subcategory indicator influence SLCA results and have the potential to reverse the conclusions. The customized score is more realistic than the linear score because it can better capture the complexity of the subcategory indicators based on SLCA expert judgment.

Conclusions

Our approach addresses a methodological weakness of the impact assessment phase of SLCA through a more representative performance of the potential social impacts based on the judgment of the SLCA expert rather than a simplified assumption of linearity and equal weighting among indicators. This approach may be applied to all types of product systems.

Recommendations

The value functions and weighting factors cannot be generalized for all cases and the proposed approach must be adapted for each study. We stopped at the aggregation of the subcategory indicators based on expert judgment at the stakeholder level. If a complete aggregation in a single score is required, we recommend developing a framework that accounts for the value judgment of the decision-maker rather than the SLCA expert.
  相似文献   

11.

Background  

Many biological processes involve the physical interaction between protein domains. Understanding these functional associations requires knowledge of the molecular structure. Experimental investigations though present considerable difficulties and there is therefore a need for accurate and reliable computational methods. In this paper we present a novel method that seeks to dock protein domains using a contact map representation. Rather than providing a full three dimensional model of the complex, the method predicts contacting residues across the interface. We use a scoring function that combines structural, physicochemical and evolutionary information, where each potential residue contact is assigned a value according to the scoring function and the hypothesis is that the real configuration of contacts is the one that maximizes the score. The search is performed with a simulated annealing algorithm directly in contact space.  相似文献   

12.

Background  

Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weighted geometric correlation based on optimised atom specific weighting factors and combined them with our previously published amino acid specific scoring and with a comprehensive SVM-based scoring function.  相似文献   

13.

Background

State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients.

Results

In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study.

Conclusions

Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-291) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background  

Tandem mass spectrometry (MS/MS) is a powerful tool for protein identification. Although great efforts have been made in scoring the correlation between tandem mass spectra and an amino acid sequence database, improvements could be made in three aspects, including characterization ofpeaks in spectra, adoption of effective scoring functions and access to thereliability of matching between peptides and spectra.  相似文献   

15.

Background  

Many algorithms exist for protein structural alignment, based on internal protein coordinates or on explicit superposition of the structures. These methods are usually successful for detecting structural similarities. However, current practical methods are seldom supported by convergence theories. In particular, although the goal of each algorithm is to maximize some scoring function, there is no practical method that theoretically guarantees score maximization. A practical algorithm with solid convergence properties would be useful for the refinement of protein folding maps, and for the development of new scores designed to be correlated with functional similarity.  相似文献   

16.

Background  

Structure alignment methods offer the possibility of measuring distant evolutionary relationships between proteins that are not visible by sequence-based analysis. However, the question of how structural differences and similarities ought to be quantified in this regard remains open. In this study we construct a training set of sequence-unique CATH and SCOP domains, from which we develop a scoring function that can reliably identify domains with the same CATH topology and SCOP fold classification. The score is implemented in the ASH structure alignment package, for which the source code and a web service are freely available from the PDBj website .  相似文献   

17.

Background  

MixtureTree v1.0 is a Linux based program (written in C++) which implements an algorithm based on mixture models for reconstructing phylogeny from binary sequence data, such as single-nucleotide polymorphisms (SNPs). In addition to the mixture algorithm with three different optimization options, the program also implements a bootstrap procedure with majority-rule consensus.  相似文献   

18.

Background  

The need for fast and accurate scoring functions has been driven by the increased use of in silico virtual screening twinned with high-throughput screening as a method to rapidly identify potential candidates in the early stages of drug development. We examine the ability of some the most common scoring functions (GOLD, ChemScore, DOCK, PMF, BLEEP and Consensus) to discriminate correctly and efficiently between active and non-active compounds among a library of ~3,600 diverse decoy compounds in a virtual screening experiment against heat shock protein 90 (Hsp90).  相似文献   

19.

Background  

Dekapentagonal maps depict the phylogenetic relationships of five genomes in a visually appealing diagram and can be viewed as an alternative to a single evolutionary consensus tree. In particular, the generated maps focus attention on those gene families that significantly deviate from the consensus or plurality phylogeny. PentaPlot is a software tool that computes such dekapentagonal maps given an appropriate probability support matrix.  相似文献   

20.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号