首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mature B cells replace the mu constant region of the H chain with a downstream isotype in a process of class switch recombination (CSR). Studies suggest that CSR induction is limited to activated mature B cells in the periphery. Recently, we have shown that CSR spontaneously occur in B lymphopoiesis. However, the mechanism and regulation of it have not been defined. In this study, we show that spontaneous CSR occurs at all stages of B cell development and generates aberrant joining of the switch junctions as revealed by: 1) increased load of somatic mutations around the CSR break points, 2) reduced sequence overlaps at the junctions, and 3) excessive switch region deletion. In addition, we found that incidence of spontaneous CSR is increased in cells carrying VDJ rearrangements. Our results reveal major differences between spontaneous CSR in developing B cells and CSR induced in mature B cells upon activation. These differences can be explained by deregulated expression or function of activation-induced cytidine deaminase early in B cell development.  相似文献   

4.
Humoral immunity is the branch of the immune system maintained by B cells and mediated through the secretion of antibodies. Upon B cell activation, the immunoglobulin locus undergoes a series of genetic modifications to alter the binding capacity and effector function of secreted antibodies. This process is highlighted by a genomic recombination event known as class switch recombination (CSR) in which the default IgM antibody isotype is substituted for one of IgG, IgA, or IgE. Each isotype possesses distinct effector functions thereby making CSR crucial to the maintenance of immunity.Diversification of the immunoglobulin locus is mediated by the enzyme activation-induced cytidine deaminase (AID). A schematic video describing this process in detail is available online (http://video.med.utoronto.ca/videoprojects/immunology/aam.html). AID''s activity and the CSR pathway are commonly studied in the assessment of B cell function and humoral immunity in mice. The protocol outlined in this report presents a method of B cell isolation from murine spleens and subsequent stimulation with bacterial lipopolysaccharide (LPS) to induce class switching to IgG3 (for other antibody isotypes see Table 1). In addition, the fluorescent cell staining dye Carboxyfluorescein succinimidyl ester (CFSE) is used to monitor cell division of stimulated cells, a process crucial to isotype switching 1, 2.The regulation of AID and the mechanism by which CSR occurs are still unclear and thus in vitro class switch assays provide a reliable method for testing these processes in various mouse models. These assays have been previously used in the context of gene deficiency using knockout mice 3. Furthermore, in vitro switching of B cells can be preceded by viral transduction to modulate gene expression by RNA knockdown or transgene expression 4-6. The data from these types of experiments have impacted our understanding of AID activity, resolution of the CSR reaction, and antibody-mediated immunity in the mouse.Download video file.(58M, mp4)  相似文献   

5.
Asymmetric cell divisions occur repeatedly during plant development, but the mechanisms by which daughter cells are directed to adopt different fates are not well understood [1,2]. Previous studies have demonstrated roles for positional information in specification of daughter cell fates following asymmetric divisions in the embryo [3] and root [4]. Unequally inherited cytoplasmic determinants have also been proposed to specify daughter cell fates after some asymmetric cell divisions in plants [1,2,5], but direct evidence is lacking. Here we investigate the requirements for specification of stomatal subsidiary cell fate in the maize leaf by analyzing four mutants disrupting the asymmetric divisions of subsidiary mother cells (SMCs). We show that subsidiary cell fate does not depend on proper localization of the new cell wall during the SMC division, and is not specified by positional information acting on daughter cells after completion of the division. Instead, our data suggest that specification of subsidiary cell fate depends on polarization of SMCs and on inheritance of the appropriate daughter nucleus. We thus provide evidence of a role for unequal inheritance of an intracellular determinant in specification of cell fate after an asymmetric plant cell division.  相似文献   

6.
The role of T cells in Ig isotype regulation is still unclear. To address this question, we generated mitogen-stimulated T cell clones from normal human lymphoid follicles of the gut-associated lymphoid tissue (appendix). Both the T cell clones and clonal supernatants provided preferential help for IgA secretion by PWM-stimulated B cells. Many of these CD3+, CD4+, 4B4+, DR+ helper clones co-expressed Fc-gamma and Fc-alpha R, but there was poor correlation between the expression of Fc-alpha R and IgA help (p = 0.31). Most of the T cell clones helped both IgM+A- and IgM-A+ B cell populations to secrete IgA, suggesting that they mediate switch of isotype-uncommitted B cells as well as post-switch expansion of IgA-committed B cells; however, some of the T cell clones helped IgM+A- B cell populations much more than IgM-A+ B cell populations, suggesting that, in this case, the regulatory effect is predominantly at the level of B cell switch. In all, these results show that the mucosal immune system contains individual T cells which are capable of positively regulating IgA-specific isotype differentiation at two levels of B cell development, thus allowing for efficient generation of IgA-secreting B cells.  相似文献   

7.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

8.
9.
10.
11.
Developmental process of sun and shade leaves in Chenopodium album L.   总被引:1,自引:0,他引:1  
The authors’ previous study of Chenopodium album L. revealed that the light signal for anatomical differentiation of sun and shade leaves is sensed by mature leaves, not by developing leaves. They suggested that the two‐cell‐layered palisade tissue of the sun leaves would be formed without a change in the total palisade tissue cell number. To verify that suggestion, a detailed study was made of the developmental processes of the sun and shade leaves of C. album with respect to the division of palisade tissue cells (PCs) and the data was expressed against developmental time (leaf plastochron index, LPI). The total number of PCs per leaf did not differ between the sun and shade leaves throughout leaf development (from LPI ?1 to 10). In both sun and shade leaves, anticlinal cell division of PCs occurred most frequently from LPI ?1 to 2. In sun leaves, periclinal division of PCs occurred synchronously with anticlinal division. The constancy of the total number of PCs indicates that periclinal divisions occur at the expense of anticlinal divisions. These results support the above suggestion that two‐cell‐layered palisade tissue is formed by a change of cell division direction without a change in the total number of PCs. PCs would be able to recognize the polarity or axis that is perpendicular to the leaf plane and thereby change the direction of their cell divisions in response to the light signal from mature leaves.  相似文献   

12.
Ig class switch recombination (CSR) occurs by an intrachromosomal deletional process between switch (S) regions in B cells. To facilitate the study of CSR, we derived a new B cell line, 1.B4.B6, which is uniquely capable of mu --> gamma3, mu --> epsilon, and mu --> alpha, but not mu --> gamma1 CSR at its endogenous loci. The 1.B4.B6 cell line was used in combination with plasmid-based isotype-specific S substrates in transient transfection assays to test for the presence of trans-acting switching activities. The 1.B4.B6 cell line supports mu --> gamma3, but not mu --> gamma1 recombination, on S substrates. In contrast, normal splenic B cells activated with LPS and IL-4 are capable of plasmid-based mu --> gamma1 CSR and demonstrate that this S plasmid is active. Activation-induced deaminase (AID) was used as a marker to identify existing B cell lines as possible candidates for supporting CSR. The M12 and A20 cell lines were identified as AID positive and, following activation with CD40L and other activators, were found to differentially support mu --> epsilon and mu --> alpha plasmid-based CSR. These studies provide evidence for two new switching activities for mu --> gamma1 and mu --> epsilon CSR, which are distinct from mu --> gamma3 and mu --> alpha switching activities previously described. AID is expressed in all the B cell lines capable of CSR, but cannot account for the isotype specificity defined by the S plasmid assay. These results are consistent with a model in which isotype-specific switching factors are either isotype-specific recombinases or DNA binding proteins with sequence specificity for S DNA.  相似文献   

13.
14.
Summary Ooplasmic segregation inPhallusia mammillata was completed 3 to 5 min after fertilization. Colchicine, which completely stopped nuclear divisions, did not inhibit segregation. Cytochalasin B, which prevented cleavage at a low concentration (0.2 g/ml) inhibited segregation only at a concentration at least five times higher. The action of these drugs leads to the conclusion that ooplasmic segregation does not depend on an assembly of microtubules or on microfilaments which are involved in cell division.This work was performed at the Station Zoologique Villefranche-sur mer (Director: Prof. P. Bougis). The work was supported by a grant A.T.P. of C.N.R.S.  相似文献   

15.
Class switch recombination (CSR) is a programmed gene rearrangement in which a B cell which is producing IgM and IgD antibody develops into an IgG-, IgA- or IgE-expressing cell. This is achieved by recombination between switch regions located 5' of each of the immunoglobulin heavy chain constant regions, except Cdelta. The mechanism of CSR has not been resolved but it is thought to involve a double-strand break followed by end joining. It has previously been suggested that the nucleotide excision repair protein ERCC1 may be involved in CSR due to its known roles in removal of 3' single-stranded tails in various types of recombination. In this study, we examined class switching in cultured splenocytes from ERCC1-deficient mice and found no evidence of any deficiency.  相似文献   

16.
IL-4 and IFN-gamma each have potent effects on B cell responses as well as strong mutual antagonism. Here we have examined the quantitative effects of these cytokines on CD40 ligand-induced B cell proliferation, cell survival, and division-linked isotype switching. Both IL-4 (strongly) and IFN-gamma (weakly) enhanced the number of B cells found in culture by reducing the average time cells take to enter the first division cycle and by promoting B cell survival. When added in combination, the net effect of IL-4 and IFN-gamma on time to division and survival was a response intermediate between that of the two cytokines alone, indicating a partial antagonism of IL-4 by IFN-gamma. By modulating both time to division and cell survival, these small effects of IFN-gamma are amplified and give rise to large reductions in cell number in the presence of IL-4. At higher concentrations, IFN-gamma had minor inhibitory effects on IL-4-induced isotype switching to IgG1 and greater effects on IgE. A reciprocal relation was observed between the ability to inhibit IgE at late cell divisions vs induction of IgG2a. In contrast, IL-4 did not prevent switching to IgG2a induced by IFN-gamma alone. Therefore, antagonism between IFN-gamma and IL-4 is observed at multiple levels and over different concentration ranges, resulting in complex net outcomes. The evolutionary significance of this complexity is discussed.  相似文献   

17.
The type and number of cell divisions of neuronal progenitors determine the number of neurons generated during the development of the vertebrate central nervous system. Over the past several years, there has been substantial progress in characterizing the various kinds of neuronal progenitors and the types of symmetric and asymmetric divisions they undergo. The understanding of the cell-biological basis of symmetric versus asymmetric progenitor cell division has been consolidated, and the molecular machinery controlling these divisions is beginning to be unravelled. Other recent advances include comparative studies of brain development in rodents and primates, as well as the identification of gene mutations in humans that affect the balance between the various types of cell division of neuronal progenitors.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号