首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five field experiments on barley were done at four sites from 1970 to 1975, with an additional site in 1975, comparing five rates of nitrogen application. The crops were sampled at c. 14-day intervals from about the four-leaf stage to maturity to follow changes with time in the dry weights of the constituent plant parts and to measure fertile tiller number, grain number per ear and grain weight. Some data have been selected from this body of information and regression analysis has been used to assess the possible importance of pre- and post-anthesis growth in determining the yield of barley. Ear emergence was taken as an approximate indicator of anthesis. Yield was closely related (r=+0–96) and almost equal to the amount of dry matter accumulated before ear emergence for twenty-one of the experiments, with a regression coefficient of 0–95. In two of the remaining experiments the regression coefficient was greater, 1–14; and smaller in the other two, o-8i. Plant population is also shown to affect the regression coefficient. Despite these anomalies grain yield was more closely related to plant dry weight at ear emergence than to the increase in weight after ear emergence (r =+0–79). The increase in plant dry weight after ear emergence was frequently less than the yield of grain, suggesting that the plant can compensate for inadequate photosynthesis during grain filling. The result of this compensation is a reduction in straw dry weight. This implies that previously assimilated dry matter is transported to the grain, or that respiratory losses from the straw are not replaced by current photosynthesis. These observations suggest that yield may be limited by sink capacity rather than by photosynthesis after ear emergence. The main component of sink capacity, grain number per m2 was closely related to yield (r =+0–95) and is known to be determined at or before anthesis. Grain size was shown to be related to grain number per ear (r= 4- 0–99), suggesting that grain size is also, at least partially, determined at ear emergence. Therefore, all the yield components are determined, wholly or partly before ear emergence.  相似文献   

2.
The effects of four fungicide treatments for the control of mildew on spring barley were assessed in three field experiments, one in each of the years 1981, 1982, 1983. The fungicide treatments (+/ - triadimenol seed treatment and +/ - triadimefon foliar spray applied during early booting) were chosen to control mildew, and hence affect yield determining processes, at different times in the life of the crop. Two of the experiments also tested different nitrogen amounts and the third tested four varieties differing in their degree of mildew resistance. Mildew appeared too late to affect the production and survival of spikelets and shoots, but reduced average grain weight by reducing the rate of grain growth. Grains in the upper part of the ear had a considerably lower growth rate and final weight than grains in central and basal positions but there was no evidence that the effects of mildew on grain size depended upon grain position within the ear. Mildew incidence increased with increasing nitrogen and varietal susceptibility but there were few significant interactions between these factors and fungicide treatment for grain yield. The degree of mildew control achieved by the seed treatment varied with barley variety. Use of the two successive fungicide treatments did not yield more barley than use of either alone. Amongst varieties, grain positions within the ear and fungicide treatments there was a close correlation between rate of grain growth and final grain weight. Duration of grain growth was not related to rate of grain growth or final grain weight but was inversely correlated with mean temperature during the period of rapid grain growth. The temperature sums during the period of rapid grain growth were similar for the three years and it is suggested that a more precise knowledge of the relationships between mildew incidence, varietal susceptibility and rate of grain growth may enable more accurate predictions to be made about likely yield responses to fungicide treatments.  相似文献   

3.
Abstract: The relationship between abundance of rose‐grain aphid Metopolophium dirhodum (Walker) and leaf chlorophyll content of spring wheat, spring oats and winter barley was investigated. Within production stands of each crop 18–25 plots were established, located at places with different plant quality where aphids were counted on particular leaves of 50–100 tillers, and the leaf chlorophyll content and area were determined. In all stands aphid numbers × tiller?1 increased exponentially with chlorophyll content (r2 = 0.783–0.933). This parallel variation may be explained by increased nitrogen content and assimilate production of vigorous chlorophyll‐rich plants. The aphid numbers on leaves of particular order (within‐plant distribution) were also correlated with leaf chlorophyll content (r2 = 0.373–0.827). However, in oats and barley the analysis of variance of residuals of log aphids × leaf?1 versus leaf chlorophyll regression revealed a significant effect of leaf position (the order of the leaf from the top of the plant). The magnitude of residuals was positively related to leaf size and may be related to the intensity of phloem transport from the source leaves to sink organs.  相似文献   

4.
Seed was obtained from two adjacent trials of wheat (cv. Avalon) and triticale (cv. Lasko) harvested in 1990. The treatments consisted of factorial combinations of five levels of spring nitrogen (50, 100, 150, 200 and 250 kg N ha-1) with fungicide treatments designed to control foliar diseases. Seed was graded by size into different fractions. Application of foliar fungicides to the parent plant increased the proportion of large seed in wheat but not in triticale. Fungicide application had no effect on seed vigour (quantified as the value of K; after controlled deterioration), final germination, median germination time (t50) or rate of germination. Parent plant nutrition altered the proportions of seed in different size categories in triticale and wheat. In laboratory germination tests, final germination of wheat increased with seed size. Large (> 3.0 mm diameter) wheat seed from plots receiving 50 kg N ha“1 had a lower final germination than large seed from plots which had received greater amounts of nitrogen, but t50 and K; were similar for all nitrogen levels. In triticale, the higher the seed weight, the higher the final germination, the faster the rate and the higher the Ki. Final germination, t50 and K;, were all positively correlated with the amount of nitrogen received by the parent plants. Parent plant nutrition had no effect on the response to temperature of final germination, t50, or rate of germination for large or small seeds of both wheat and triticale.  相似文献   

5.
 Induced mutants in the barley cultivar Triumph have been screened for reduced dormancy. One line, which germinated readily 2 weeks after harvest, was classified as ABA-insensitive, since it could tolerate a ten-fold increase in ABA, compared to its parent, before germination was inhibited. This mutant, designated TL43, was genotypically similar to Triumph and phenotypically similar under Scottish growing conditions, except for a slightly reduced grain size. In Spain, it showed considerable reductions in both grain yield and plant height, suggesting that it was less widely adapted than its parent. Levels of α-amylase activity were increased at both sites. The mutant appeared to be different from those with ABA insensitivity or altered dormancy previously documented in either barley or Arabidopsis. Received: 23 March 1998 / Accepted: 13 August 1998  相似文献   

6.
Pot experiments were carried out to investigate the effect of inoculation with pure and mixed cultures of nitrogen fixers Azospirillum lipoferum 137, Arthrobacter mysorens 7 and the phosphate-solubilizing strain Agrobacterium radiobacter 10 on growth and mineral nutrition of two barley cultivars. A significant positive effect on grain yield both of the studied barley cultivars was obtained after inoculation with mixtures of A. lipoferum 137 + A. radiobacter 10 and A. lipoferum 137 + A. mysorens 7 only. The acetylene reduction activity on roots or in batch culture was significantly higher when A. lipoferum 137 and A. radiobacter 10 were combined. Using 15N isotope dilution technique it was established that these mixed cultures significantly increased the accumulation of nitrogen fertilizer in the plants. The strain A. radiobacter 10 promoted a better accumulation of phosphorus fertilizer by plants and A. mysorens 7 increased the total phosphorus content in plant tissues. The maximum positive effect of joint inoculation on plant development was observed when the combined nitrogen in soil was in short supply. It was concluded that inoculation with bacterial mixtures provided a more balanced nutrition for the plants and the improvement in root uptake of nitrogen and phosphorus was the major mechanism of interaction between plants and bacteria. The introduced bacteria were able to colonize actively the rhizoplane of barley. No interspecific competition or antagonism were established between components of the bacterial mixtures in the rhizoplane. The strains A. mysorens 7 and A. radiobacter 10 improved viability of A. lipoferum 137 when the plants were grown in acid soil. Field experiments carried out on 3 barley cultivars confirmed the assertion that inoculation with mixed cultures significantly increases the grain yield and nitrogenous nutrition of plants as compared with single cultures.  相似文献   

7.
A field experiment was conducted to investigate the effects of foliar application of a synthetic cytokinin (BAP) on source and sink strength of four different six-rowed barley (Hordeum vulgare L.) cultivars. Different spraying treatments consisting of spraying on whole plant, spraying only on leaves and spraying only on ears started at anthesis and continued for 7 days. One additional spraying was carried out on late period of grain filling. Results showed that spraying only on leaves did not affect ear weight, grain yield and 1,000-grain weight, while the two other treatments increased all above mentioned traits. Neither of treatments affected stem weight, biological yield and contribution of stem reserves in grain filling. Exogenous cytokinin did not increase photosynthetic rate and chlorophyll content in treated leaves until late period of grain filling, although there was no significant increase in final grain weight due to late application of BAP. Our results suggested that effects of foliar application of BAP were mostly due to increased sink size soon after anthesis and increased sink demand probably met by current photosynthesis of organs other than leaves, like ear green tissues. An erratum to this article is available at .  相似文献   

8.
Effects of variation in ear temperature on growth and yield of spring wheat   总被引:1,自引:0,他引:1  
Wheat plants were kept in a growth room at 15 oC from 7 days after an-thesis until maturity and their ears were warmed to 20 or 25 oC for various periods. Continuous warming initially increased the growth rate of the ear and decreased that of the stem, but hastened senescence of the ear and decreased final grain yield by decreasing dry weight per grain. Warming the ears increased the movement of 14C and nitrogen to them from the leaves and stem during the early stages of grain growth but decreased it later. Warming the ears for only the first 10 or 20 days also hastened ear senescence; grain yield decreased progressively with increase in duration of the warm period. All effects were greater at 25 than at 20 oC. The effects of changing ear temperature from 15 to 20 oC were independent of the temperature of the rest of the plant. Altering the humidity of the air around the ears by 4–7 mb at constant temperature had no effect on ear growth or senescence. Warming all of the plant except the ears from 15 to 20 oC increased ear growth slightly during early grain growth and decreased it later, irrespective of ear temperature: stem dry weight, leaf area and net photosynthetic rate of flag leaves and green stems were decreased and dark respiration rate of stems was increased.  相似文献   

9.
二棱啤酒大麦杂种一代及其亲本主要性状的灰色系统分析   总被引:8,自引:0,他引:8  
研究采用灰色关联分析方法,对20组二棱型啤酒大麦杂种一代及其亲本的7个主要性状之间的关联系数、关联度和关联序进行了分析。结果表明:在关联度和关联序中,大麦的穗粒数、穗粒重,千粒重分别与穗长这一性状的关联度最大,关联序中穗长全排在首位;而穗粒数,穗粒重,千粒重分别与有效穗数这一性状的关联度最小,关联序中有效穗数全排在末位,为了提高单株产量应注意协调好有效穗数与穗长这一对主要矛盾明确各性状对籽粒产量所起的直接和间接作用及其相对重要性,确定主攻方向,配制各种优势组合。为大麦亲本选配提供科学依据。从而达到二棱型啤酒大麦预期的育种目标。  相似文献   

10.
11.
Background

Alike to Reduced height-1 (Rht-1) genes in wheat and the semi dwarfing (sd-1) gene in rice, the sdw1/denso locus involved in the metabolism of the GA, was designated as the ‘Green Revolution’ gene in barley. The recent molecular characterization of the candidate gene HvGA20ox2 for sdw1/denso locus allows to estimate the impact of the functional polymorphism of this gene on the variation of agronomically important traits in barley.

Results

We investigated the effect of the 7-bp deletion in exon 1 of HvGA20ox2 gene (sdw1.d mutation) on the variation of yield-related and malting quality traits in the population of DHLs derived from cross of medium tall barley Morex and semi-dwarf barley Barke. Segregation of plant height, flowering time, thousand grain weight, grain protein content and grain starch was evaluated in two diverse environments separated from one another by 15° of latitude. The 7-bp deletion in HvGA20ox2 gene reduced plant height by approximately 13 cm and delayed flowering time by 3–5 days in the barley segregating DHLs population independently on environmental cue. On other hand, the sdw1.d mutation did not affect significantly either grain quality traits (protein and starch content) or thousand grain weight.

Conclusions

The beneficial effect of the sdw1.d allele could be associated in barley with lodging resistance and extended period of vegetative growth allowing to accumulate additional biomass that supports higher yield in certain environments. However, no direct effect of the sdw1.d mutation on thousand grain weight or grain quality traits in barley was detected.

  相似文献   

12.
Summary Chromosome 5A of bread wheat, Triticum aestivum carries the major gene, Vrnl, which is one of the main determinants of the winter/spring growth habit polymorphism in this species. Genetical analysis of this chromosome has been carried out using single-chromosome recombinant lines to establish the pleiotropic effects of this locus and two other major genes, q determining ear morphology and bl determining the presence of awns, on important agronomic characters. The three major genes were located on the long arm of chromosome 5A with a gene order of: centromere -bl-q-Vrnl. Analysis of quantitative characters from a winter sowing revealed pleiotropic effects of Vrnl or the effects of closely linked loci on the characters plant height, tiller number and spikelet number. However effects on ear emergence time were not associated with Vrnl but with q as were effects on spikelet number and ear length. In addition a locus determining yield/plant was located between Vrnl and q. Independant loci determining height and ear length were apparent on the short arm of chromosome 5A. From a spring sowing, however, there was a large pleiotropic effect of Vrnl on ear emergence time, as well as the effects previously detected. In addition, associated with q were effects on plant height and grain size which were not expressed from the winter sowing.  相似文献   

13.
Nitrogen fertilization strategies were widely adopted to enhance grain production and improve nitrogen utilization in rice all over the world. For fertilization timing strategy, ear fertilization was usually employed in recent years. For fertilization amount strategy, nitrogen fertilization would continually increase to meet the demands of increasing people for food. However, under heavy ear fertilization as well as great nitrogen amount (NA), physiological N-use efficiency (PE, defined as grain production per unit nitrogen uptake by plants) decreased. Under three NA and two ratios of fertilization given during ear development period to total NA (ear fertilization distribution ratio, EFDR), net photosynthetic rate (Pn), Pn to nitrogen content per unit area (photosynthetic N-use efficiency, Pn/N), nitrogen accumulation in plant tissues and PE of three rice (Oryza sativaL.) genotypes, Jinyou 253, Liangyoupeijiu and Baguixiang were screened in the first and second seasons in 2002 so as to understand the fluctuation patterns of Pn/N and nitrogen distribution in leaf blades under great NA & EFDR and relationship with PE in rice. Results showed that under greater NA & EFDR, Pn in flag leaves at heading and plant nitrogen accumulation at maturity always increased and PE & Pn/N always decreased in spite of increased grain production. Rice distributed more nitrogen in leaf blade under greater NA and EFDR. PE indicated significantly (P<0.05) positive relationship with Pn/N and negative relationship with nitrogen distribution ratio in leaf blades at heading and maturity, and no association with Pn in two growing seasons. Results suggested that low PE in rice under great NA and heavy ear fertilization is associated to more nitrogen distribution in leaf blades and decreases in photosynthetic efficiency.  相似文献   

14.
Leaf size and foliar disease in winter barley increased with increasing total amounts of nitrogen applied to the crop: flag leaf areas increased at an average of 10% per 35 kg N ha-1 Nitrogen top dressing applied in mid-March (G.S. 31) resulted in larger leaves, more foliar disease, more straw, delayed ear emergence, fewer grains ear-1 and less grain yield than nitrogen applied in mid-April (G.S. 31). Application of chlormequat at G.S. 30 gave a variable response, but overall it increased fertile stems m-2 and crop yield and decreased crop height but had no significant effect on straw yield. Fungicide treatments suppressed foliar disease and improved yield. Yield responses were greater when plant growth regulator and mid-March nitrogen had been applied at sites where more disease prevailed than with April-applied nitrogen. In one of the field experiments, on cv. Sonja, delaying the main nitrogen application until April, without fungicide treatment, gave a similar yield to that provided by nitrogen in March with two or three fungicide sprays.  相似文献   

15.
Silver nanoparticles (AgNPs) were biosynthesized using the cell-free filtrate of bacterium Proteus mirabilis, reacted with 1 mM of AgNO3 solutions at 37 °C. The synthesis of AgNPs was monitored by UV–Vis spectroscopy and transmission electron microscopy (TEM) equipped with selected area electron diffraction (SAED). The results point to formation of spherical to cubical particles of AgNPs ranging in size from 5 to 35 nm with an average of 25 nm in diameter. The toxicity of Ag on barley (Hordeum vulgare L. cv. Gustoe) that was subjected to Ag+ as AgNO3 and AgNPs was explored. The grain germination and seedling growth of barley decreased in the presence of 0.1 mM Ag+ and was inhibited at 1 mM Ag+. In contrast, our results indicated that the AgNPs at low concentration (0.1 mM) could be useful for barley grain germination and seedling growth. However, the higher concentrations of AgNPs (0.5 and 1 mM) reduced grain germination and exhibited a stronger reduction in the root length. A decline in the photosynthetic pigments and disorganization of chloroplast grana thylakoids in Ag+ and AgNPs-treated plants confirmed the leaf chlorosis. An increase of plastoglobuli within chloroplasts was observed in Ag+ and AgNPs-treated leaves. Ag+ caused dense aggregation of nuclear chromatin materials and degeneration of mitochondria. Ag+ and AgNPs increased contents of malondialdehyde, soluble proteins, total phenolic compounds and activity of guaiacol peroxidase in barley leaves; these results point to activation of plant defence mechanisms against oxidative stress in barley.  相似文献   

16.
The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue‐specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18–30% of wild‐type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue‐specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.  相似文献   

17.
HIROTA  O.; OKA  M.; TAKEDA  T. 《Annals of botany》1990,65(4):349-353
During the ripening stage of barley and rice, the sink activitywas defined as the dry matter increase per units sink size,leaf area and time, as follows: NAR = A.SinkW+NAR', where NAR is the net assimilation rate (g d.wt dm–2d–1);A is the sink activity [g d.wt g–1d.wt (ear) dm–2d–1]; Sink W is ear wt per plant at heading (g d.wt);and NAR' is net assimilation rate excluding the assimilate ofsink organ (g d.wt dm–2 d–1). Plant material with 16 combinations of mutually different sink(ear) and source (leaf) size were produced at heading for eachcrop: parts of each leaf and ear were removed to produce fourgrades in barley, and also a part of each leaf was removed producingfour grades for four rice varieties showing different ear size.NAR and NAR' were determined during 26 and 21 d in barley andrice after heading, respectively. Sink activity (A), representedas the assimilation rate induced by the sink organ, was estimatedfrom the relationship between SinkW and NAR using the previousequation. The sink activity was significantly higher in ricewith a value of 0–0.028 g d.wt g–1 d.wt (ear) dm–2d–1 vs. 0–0.0017 in barley, suggesting that therelative role of leaves for grain filling is considerably higherin rice than in barley. The sink activity obtained in the studymight be introduced into a model to predict the yields of barleyand rice. Hordeum vulgare L, barley, Oryza saliva L, rice, dry matter, NAR, sink, source, sink activity, model  相似文献   

18.
Physiological Factors Limiting Grain Size in Wheat   总被引:5,自引:0,他引:5  
The effects on grain size of changing the supply of assimilates,by thinning before anthesis or by shading the plants or by halvingthe ears either early or late in grain growth, were studiedin two glasshouse experiments with Kleiber spring wheat (Triticumaestivum L.), in 1976 and 1977. Late treatments had no effect,presumably because little grain growth occurred thereafter.Thinning the plants before anthesis increased, and shading theplants soon after anthesis decreased grain size. Halving theears soon after anthesis increased the size of the remaininggrains, but grain weight per ear decreased. The effect on grainsize of halving the ear tended to be smaller under conditionsmore favourable for photosynthesis, except when the plants werethinned before anthesis. Shading decreased the total amountof nitrogen per culm and the proportion of total nitrogen recoveredin the ear. Halving increased the retention of nitrogen in thestem of unshaded shoots and had no effect on nitrogen distributionwithin shaded shoots. In 1977 halving the ear increased the rate of dry matter accumulationin the grain throughout the grain filling period, but in 1976the increase in dry weight was faster in the grains of halvedears only during early grain growth. Later the grains in halvedand intact ears increased in dry weight at the same rate, eventhough the supply of photosynthate and the capacity of the grains(as measured by volume) were greater in the halved ears. Theseresults are discussed in relation to the influence on finalgrain weight of assimilate supply and the storage capacity ofthe grain.  相似文献   

19.
Sánchez-Díaz  M.  García  J.L.  Antolín  M.C.  Araus  J.L. 《Photosynthetica》2002,40(3):415-421
The combined effects of water status, vapour pressure deficit (VPD), and elevated temperature from heading to maturity were studied in barley. Plants growing at high VPD, either under well-watered or water deficit conditions, had higher grain yield and grain filling rate than plants growing at low VPD. By contrast, water stress decreased grain yield and individual grain dry matter at any VPD. Water regime and to a lesser extent VPD affected 13C of plant parts sampled at mid-grain filling and maturity. The differences between treatments were maximal in mature grains, where high VPD increased 13C for both water regimes. However, the total amount of water used by the plant during grain filling did not change as response to a higher VPD whereas transpiration efficiency (TE) decreased. The net photosynthetic rate (P N) of the flag leaves decreased significantly under water stress at both VPD regimes. However, P N of the ears was higher at high VPD than at low VPD, and did not decrease as response to water stress. The higher correlation of grain yield with P N of the ear compared with that of the flag leaf support the role of ear as the main photosynthetic organ during grain filling under water deficit and high VPD. The deleterious effects of combined moderately high temperature and drought on yield were attenuated at high VPD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号