首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two cyanogen bromide fragments (alpha 1-CB7 and alpha 1-CB8) of bovine corneal stromal collagen have been isolated and characterized. These added to those characterized in our previous work account for 95% of the amino acid sequence of the alpha 1(1)-chain. The hydroxylysine glycoside content of each fragment was determined and in this way the general distribution of glycoside over the entire molecule was deduced accounting for all the galactosylhydroxylysine and most of the glucosylgalactosylhydroxylysine of this heavily glycosylated type I collagen. The characterization of fragments alpha 1-CB7 and alpha 1-CB8 has enabled us to resolve the controversy over the relative mobilities of these fragments on SDS gels. Fragment alpha 1-CB7 of bovine corneal collagen was digested by trypsin and by staphylococcal proteinase V8. The resultant peptides were isolated by gel and ion-exchange chromatography and identified in relation to the known amino acid sequence of type I collagen. The hydroxylysine glycosides were determined in the relevant peptides providing a complete account of their distribution along this part of the collagen molecule. Most of the glycoside was found in the gap region of collagen especially near the edges of the axial holes where it could act as a peg to facilitate fibre formation. In addition, some glycoside was found in the overlap region where, being unable to fit into axial holes, it might impede the growth of the fibre and, with other glycoside of the overlap region, might be responsible for the narrow fibres of corneal collagen that are essential for corneal transparency. This glycoside, with that previously found in the peptide alpha 1-CB3 is the only hydroxylysine glycoside identified in the overlap region of a type I collagen.  相似文献   

2.
Tendon and corneal decorins are differently iduronated dermatan sulphate/proteoglycan (DS/PG) and the biochemical parameter that differentiates type I collagens is the hydroxylysine glycoside content. We have examined the effect of tendon and corneal decorins on the individual phases (tlag, dA/dt) of differently glycosylated type I collagens fibril formation, at molar ratios PG:collagen monomer ranging from 0.15 : 1 to 0.45 : 1. The results obtained indicate that decorins exert a different effect on the individual phases of fibril formation, correlated to the degree of glycosylation of collagen: at the same PG:collagen ratio the fibril formation of highly glycosylated corneal collagen is more efficiently inhibited than that of the poorly glycosylated one (tendon). Moreover tendon and corneal decorins exert a higher control on the fibrillogenesis of homologous collagen with respect to the heterologous one. These data suggest a possible tissue-specificity of the interaction decorin/type I collagen correlated to the structure of the PG and collagen present in extracellular matrices. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both alpha 1(I) and alpha 2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by alpha, alpha'-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

4.
The low angle X-ray diffraction pattern from corneal stroma can be interpreted as arising from the equivalent of sharp meridional reflections due to the packing of molecules along the collagen fibrils and an equatorial pattern due to the packing of these fibrils within lamellae.Axial electron density profiles for corneal collagen fibrils have been produced by combining intensity data from the meridional pattern with two independent sets of phases. The first set was obtained using an electron microscopical technique, whereas the second set consisted of calculated tendon collagen phases given in the literature. Substantial agreement between the two electron density profiles was found.A quantitative analysis of the difference between the electron density profiles of rat tail tendon and corneal collagen showed that the step between the gap and overlap regions is smaller in cornea than in tendon. This is probably due to the binding of non-collagenous material in the gap region as occurs in bone and other tissue. Two peaks corresponding to regions where electron density is greater in the cornea are situated at the gap/overlap junctions. A third region where the corneal collagen is more electron dense is located near the centre of the gap region. The proximity of these peaks to the positions of hydroxylysine residues along the fibril axis suggests that they may be the major sites at which sugars are bound to corneal collagen.  相似文献   

5.
The N epsilon-glycosylation of lysine and hydroxylysine residues in collagen from streptozotocin-induced-diabetic rats was confirmed and the stability of the complex shown to be due to an Amadori rearrangement. The studies also demonstrate the relative specificities of glucose, galactose and mannose in their reaction with collagen. The glycosylation of lysine in vitro occurs with glucose and galactose, but not with mannose, whereas only gucose reacts with hydroxylysine to any significant extent. Glycosylation of collagen occurs slowly during normal aging, but in contrast with reports suggesting accelerated aging of collagen in diabetic animals, we clearly demonstrated that the apparent increased stability is not due to an acceleration of the normal maturation process involving the reducible cross-links.  相似文献   

6.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both α1(I) and α2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal and mutant cells is severely depressed without ascorbate but in all cultures collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by α,α′-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

7.
Summary The parents of a child with the clinical symptoms of Ehlers-Danlos syndrome type VI were identified as third-degree cousins. Biochemical analysis of the dermis of the patient revealed a complete lack of hydroxylysine in the dermal collagen. The dermis of both parents contained only half the amount of hydroxylysine found in healthy individuals. Hydroxylation of prolyl residues was normal in the skin of the patient and his parents. Investigation of the collagen synthesized by fibroblasts derived from the skin of the patient showed a normal proportion of type I and type III collagen. However, while hydroxylation of prolyl residues was normal in type I and type III collagen, hydroxylation of lysyl residues was markedly lower than normal in both type I and type III collagen.Presented at the Annual Meeting of the Arbeitsgemeinschaft Dermatologische Forschung (ADF) Frankfurt, November 18–20, 1977  相似文献   

8.
Type II collagen is the main structural component of hyaline cartilages where it forms networks of thin fibrils that differ in morphology from the much thicker fibrils of type I collagen. We studied here in vitro the formation of fibrils of pepsin-treated recombinant human type II collagen produced in insect cells. Two kinds of type II collagen preparation were used: low hydroxylysine collagen having 2.0 hydroxylysine residues/1,000 amino acids, including 1.3 glycosylated hydroxylysines; and high hydroxylysine collagen having 19 hydroxylysines/1,000 amino acids, including 8.9 glycosylated hydroxylysines. A marked difference in fibril formation was found between these two kinds of collagen preparation, in that the maximal turbidity of the former was reached within 5 min under the standard assay conditions, whereas the absorbance of the latter increased until about 600 min. The critical concentration with the latter was about 10-fold, and the absorbance/microgram collagen incorporated into the fibrils was about one-sixth. The morphology of the fibrils was also different, in that the high hydroxylysine collagen formed thin fibrils with essentially no interfibril interaction or aggregation, whereas the low hydroxylysine collagen formed thick fibrils on a background of thin ones. The data thus indicate that regulation of the extents of lysine hydroxylation and hydroxylysine glycosylation may play a major role in the regulation of collagen fibril formation and the morphology of the fibrils.  相似文献   

9.
Fetal wound healing: a biochemical study of scarless healing   总被引:6,自引:0,他引:6  
Human fetal surgery is being successfully performed today in a small number of highly selected patients for conditions that may lead to irreversible damage to the fetus and threaten the viability of the newborn. Following surgical repair, fetal wounds heal without scarring. This study was initiated to characterize fetal wounds both histologically and biochemically. Gore-Tex tubing was implanted into the subcutaneous tissue of the back of fetal, newborn, and adult New Zealand white rabbits. Light microscopic examination of healed wounds revealed no evidence of scar formation. Electron microscopy demonstrated a striated fibrillar structure suggestive of collagen within the lumen of the Gore-Tex tubing implants. Amino acid analysis (sensitivity 40 pmol) confirmed the presence of hydroxylysine and hydroxyproline within the Gore-Tex wound chambers indicating the presence of collagen in fetal wounds. The small amount of collagen precluded the typing of the collagen using cyanogen bromide peptide analysis. The absence of scarring and the small amounts of detectable collagen suggest a high degree of reorganization of the connective tissues involved in repair. The fetal wound matrix is rich in hyaluronic acid. Topical hyaluronic acid has been associated experimentally with a reduced amount of scarring in postnatal wound healing. Hyaluronic acid extracted from human skin and scar tissue is associated with collagen and other proteins. We propose that a hyaluronic acid-collagen-protein complex may play a role in fetal wound healing.  相似文献   

10.
Fibroblasts from many patients with osteogenesis imperfecta (OI) synthesize and secrete Type I collagen which is both overmodified and exhibits a decreased thermal denaturation temperature. We have examined the relationship between overmodification and decreased melting temperature in several favorable OI mutants by selectively inhibiting lysyl hydroxylase activity with the drug Minoxidil and comparing the melting profiles of the resultant undermodified collagen with untreated control. Minoxidil treatment causes an appreciable decrease in hydroxylysine with compensatory increases in lysine content, and the delayed sodium dodecyl sulfate-polyacrylamide gel electrophoretic mobility of the overmodified collagen chains becomes normal. However, the decreased melting temperature was unchanged from untreated OI control. When unhydroxylated collagen produced by normal control and OI fibroblasts incubated with alpha,alpha'-dipyridyl was examined, mutant OI molecules melted at a lower temperature than control. These data indicate that the decreased thermal denaturation temperature of OI mutant collagen is independent of post-translational overmodification of lysine or hydroxylysine. Presumably, substitutions for glycine in the Gly-X-Y structural motif distort the helix and produce lower melting temperatures by presently unknown mechanisms.  相似文献   

11.
Structure of corneal scar tissue: an X-ray diffraction study.   总被引:2,自引:1,他引:1       下载免费PDF全文
Full-thickness corneal wounds (2 mm diameter) were produced in rabbits at the Schepens Eye Research Institute, Boston. These wounds were allowed to heal for periods ranging from 3 weeks to 21 months. The scar tissue was examined using low- and wide-angle x-ray diffraction from which average values were calculated for 1) the center-to-center collagen fibril spacing, 2) the fibril diameter, 3) the collagen axial periodicity D, and 4) the intermolecular spacing within the collagen fibrils. Selected samples were processed for transmission electron microscopy. The results showed that the average spacing between collagen fibrils within the healing tissue remained slightly elevated after 21 months and there was a small increase in the fibril diameter. The collagen D-periodicity was unchanged. There was a significant drop in the intermolecular spacing in the scar tissues up to 6 weeks, but thereafter the spacing returned to normal. The first-order equatorial reflection in the low-angle pattern was visible after 3 weeks and became sharper and more intense with time, suggesting that, as healing progressed, the number of nearest neighbor fibrils increased and the distribution of nearest neighbor spacings reduced. This corresponded to the fibrils becoming more ordered although, even after 21 months, normal packing was not achieved. Ultrastructural changes in collagen fibril density measured from electron micrographs were consistent with the increased order of fibril packing measured by x-ray diffraction. The results suggest that collagen molecules have a normal axial and lateral arrangement within the fibrils of scar tissue. The gradual reduction in the spread of interfibrillar spacings may be related to the progressive decrease in the light scattered from the tissue as the wound heals.  相似文献   

12.
Invertebrates possess unique collagen-containing connective tissue elements, the biochemistry of which is not clearly understood. We previously reported the occurrence of a novel heterotrimeric type V/XI like collagen in the cranial cartilage of the cuttlefish Sepia officinalis. We report here the purification of the three chains by ion exchange chromatography and the physicochemical characteristics of this collagen. This collagen shared substantial similarity to the collagen purified from the cornea of S. officinalis, with respect to chain composition, cyanogen bromide peptide profile and amino acid composition. The mobility of the C3 chain was retarded in the corneal collagen, which also had an increased glycine content and a smaller ratio of hydroxylysine to lysine, together with a reduction in bound carbohydrates. The cartilage collagen had a higher denaturation temperature than corneal collagen. As observed by transmission electron microscopy of reconstituted fibrils, the heterotrimeric invertebrate collagen formed fibrils of no apparent periodicities as opposed to the regular 64-nm banding pattern of milk shark (Rhizoprionodon acutus) cartilage collagen. This is also the first report on the molecular species of collagen in an invertebrate cornea. Our results strongly support the functioning of minor vertebrate collagens as major collagens in some invertebrates, close similarity of collagens in two tissues with different functions and would hold significance to our understanding of collagen polymorphism and the evolution of the extracellular matrix.  相似文献   

13.
The insoluble collagen from methylcholanthrene induced sarcoma was isolated and characterized. It contains more glycine, hydroxyproline and acidic amino acids than normal connective tissue collagen. An anionic character of tumour collagen was stated (pI 6.1). No typical collagen subunits in this protein were found. The tumour collagen is strongly bound to acidic glycoprotein containing a significant amount of hydroxylysine. Such an insoluble complex is resistant to the dispersing action of EDTA. It dissociates during heating in concentrated urea.  相似文献   

14.
The rate-limiting step of folding of the collagen triple helix is catalyzed by cyclophilin B (CypB). The G6R mutation in cyclophilin B found in the American Quarter Horse leads to autosomal recessive hyperelastosis cutis, also known as hereditary equine regional dermal asthenia. The mutant protein shows small structural changes in the region of the mutation at the side opposite the catalytic domain of CypB. The peptidylprolyl cis-trans isomerase activity of the mutant CypB is normal when analyzed in vitro. However, the biosynthesis of type I collagen in affected horse fibroblasts shows a delay in folding and secretion and a decrease in hydroxylysine and glucosyl-galactosyl hydroxylysine. This leads to changes in the structure of collagen fibrils in tendon, similar to those observed in P3H1 null mice. In contrast to cyclophilin B null mice, where little 3-hydroxylation was found in type I collagen, 3-hydroxylation of type I collagen in affected horses is normal. The mutation disrupts the interaction of cyclophilin B with the P-domain of calreticulin, with lysyl hydroxylase 1, and probably other proteins, such as the formation of the P3H1·CypB·cartilage-associated protein complex, resulting in less effective catalysis of the rate-limiting step in collagen folding in the rough endoplasmic reticulum.  相似文献   

15.
The acid-soluble, highly cross-linked aorta collagen, of which about 30% can be converted into a soluble form by alkali treatment, followed by extraction with aetic acid, was obtained predominantly in the form of monomeric, helical molecules, as indicated by the value for the intrinsic viscosity and its behaviour in sodium dodecylsulphate disc electrophoresis. Apart from decreased values for tyrosine (0.26%), arginine (4.4%) and aspartic acid (3.9%), the amino acid composition of the aorta collagen fraction was similar to that of the acid-soluble calf skin collagen. This finding, together with the cyanogen bromide peptide pattern, shows that the collagen extracted from the artery is predominantly type I. Treatment with alkali probably shortens the alpha1-CB6-peptide by about 45 amino acids. The collagen extracted from artery was compared with acid soluble skin collagen by sodium dodecylsulphate polyacrylamide electrophoresis. The arterial collagen showed a marked increase in the rations alpha1 to alpha2 (4:1), alpha to beta (3:1) and beta11 to beta12 (2.5:1). Compared with acid soluble skin collagen, the aorta collagen contained twice as much galactose and glucose (13.5 and 9.6 nmol/mg protein respectively), which are bound to hydroxylysine. 50% of the hydroxylysine residues are unsubstituted, 15% are present as galactosyl hydroxylysine, and 35% as glucosyl-galactosyl hydroxylysine. On the basis of its reported properties, arterial collagen obtained by the method of Fujii appears to be a suitable substrate for the study of the enzymic synthesis and enzymic degradation of hydroxylysine glycosides of native arterial collagen.  相似文献   

16.
Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying collagens has never been described outside of animals. We demonstrate that the L230 open reading frame of the giant virus Acanthamoeba polyphaga mimivirus encodes an enzyme that has distinct lysyl hydroxylase and collagen glycosyltransferase domains. We show that mimivirus L230 is capable of hydroxylating lysine and glycosylating the resulting hydroxylysine residues in a native mimivirus collagen acceptor substrate. Whereas in animals from sponges to humans the transfer of galactose to hydroxylysine in collagen is conserved, the mimivirus L230 enzyme transfers glucose to hydroxylysine, thereby defining a novel type of collagen glycosylation in nature. The presence of hydroxylysine in mimivirus proteins was confirmed by amino acid analysis of mimivirus recovered from A. polyphaga cultures. This work shows for the first time that collagen post-translational modifications are not confined to the domains of life. The utilization of glucose instead of the galactose found throughout animals as well as a bifunctional enzyme rather than two separate enzymes may represent a parallel evolutionary track in collagen biology. These results suggest that giant viruses may have contributed to the evolution of collagen biology.  相似文献   

17.
An improved method for the assay of hydroxylysine   总被引:4,自引:0,他引:4  
An improved method for specific detection of hydroxylysine is presented. The procedure is based on the capability of 0.0015 m periodic acid and periodates to oxidize hydroxylysine without interference of proline. Glycosylated hydroxylysine can be detected in collagen by oxidation of unglycosylated residues before hydrolysis.  相似文献   

18.
The effects in vivo of dichloromethanediphosphonate and 1-hydroxyethane 1,1-diphosphonate on collagen solubility, hydroxylation of lysine and proline and on the formation of collagen intermolecular cross-links were studied by using rat bone, cartilage and skin tissues. Dichloromethanediphosphonate decreased bone collagen solubility both in acetic acid and after pepsin treatment. Although none of the diphosphonates had any effect on the hydroxylation of proline, dichloromethane-diphosphonate, but not 1-hydroxyethane-1,1-diphosphonate, increased the number of hydroxylysine residues in the alpha-chains of bone, skin and cartilage collagen. The stimulatory effect was dose-dependent. The dichloromethanediphosphonate-mediated increase in hydroxylysine residues in bone and cartilage was manifested in an increase of dihydroxylysinonorleucine, the cross-link that is formed by the condensation of two hydroxylysine residues. The cross-link hydroxylysinonorleucine, a condensation product of hydroxylysine and lysine, on the other hand, was decreased. The total number of intermolecular cross-links was not changed by the diphosphonate.  相似文献   

19.
1. Insoluble polymeric collagens from various human tissues were prepared by the EDTA method. Almost all of the collagen from simple soft tissues such as dermis, tendon, submucosa, sclera and cornea could be extracted, whereas the more complex tissues such as intercostal cartilage and intervertebral disc yielded only small amounts of collagen. Amino acid and carbohydrate analysis indicated that most of the preparations were highly purified on the basis of their tyrosine, hexosamine, mannose, xylose and fucose contents. 2. Wide variation in the total hexose content was observed, the lowest being 8.5 residues/3000 amino acid residues for collagen from dermis and the highest being 42.1 residues/3000 in corneal collagen. The molar ratios of sugars also varied, submucosal collagen having a galactose/glucose ratio of 1.0 and corneal collagen having a ratio of 2.3. 3. The presence of glucosylgalactosylhydroxylysine was confirmed in submucosal collagen by compositional and chromatographic analysis of this component after its isolation from alkaline hydrolysates of the collagen. Evidence was also obtained for the presence of galactosylhydroxylysine. 4. Determination of the hydroxylysyl glycosides was carried out and it was observed that the amounts of these components varied widely from tissue to tissue. Corneal collagen contained 19.1 hydroxylysine-linked carbohydrate units/3000 amino acid residues, whereas tendon collagen contained only 4.1 units/3000. Variation in the ratio disaccharide unit/monosaccharide unit was also observed, the ratio being 1.2 in intercostal cartilage collagen and 4.1 in submucosal collagen. The proportion of the total hydroxylysine that was substituted by carbohydrate also varied from tissue to tissue.  相似文献   

20.
The collagens were studied in 13 normal and 19 myxomatous human mitral valves. The collagens of the valve were completely solubilized by using a method consisting of guanidinium chloride extraction, limited pepsin digestions and CNBr cleavage of the residue. The normal valves contained 74% type I, 24% type III and 2% type V collagen. The type I and type III collagens had similar solubility patterns, although only type I collagen was detected in the guanidinium chloride extract. Type V collagen was only detected in the first pepsin extract. The type I and III collagens had higher contents of hydroxylysine than did the same collagens from age-matched dermis. The two-dimensional electrophoretic 'maps' of CNBr-cleavage peptides showed low recoveries of the C-terminal alpha 1(I) CB6 and alpha 1(III) CB9 peptides, which are involved in forming intermolecular cross-linkages. Most of the reducible cross-linkages were present in large-Mr peptide complexes, and these complexes were shown by labelling with 125I to include the tyrosine-containing alpha 1(I) CB6 peptide. The myxomatous valves contained 67% type I, 31% type III and 2% type V collagens. There was a significant increase in the concentration of each type of collagen, which consisted of a 9% increase of type I collagen, a 53% increase of type III collagen and a 25% increase of type V collagen. The contents of hydroxylysine in type I and III collagens and the electrophoretic 'maps' of the CNBr-cleavage peptides involved in cross-linkages did not differ significantly from the results obtained from the normal valves. The biochemical findings suggest that there is an increased production of collagen, in particular type III collagen, and glycosaminoglycan as well as a proliferation of cells as part of a repair process in the myxomatous valves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号